Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P
Phin Cohen, … , Johannes W. W. Lisman, Arie Derksen
Phin Cohen, … , Johannes W. W. Lisman, Arie Derksen
Published April 1, 1971
Citation Information: J Clin Invest. 1971;50(4):762-772. https://doi.org/10.1172/JCI106547.
View: Text | PDF
Research Article

Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P

  • Text
  • PDF
Abstract

Platelets are a rich source for the study of inositol lipids in man. The substitution of an EDTA-KCl solution for the water component of the Bligh and Dyer procedure permitted quantitative extraction of polyphosphoinositides. The latter, with monophosphoinositide, were found to comprise, on a molar basis, 6.7% of total platelet phospholipids. Study of the incorporation of orthophosphate-32P into platelet phospholipids was further simplified by separating eight 32P-labeled lipids, including the inositides, with a single chromatographic development on formaldehyde-treated paper. Particular attention was paid to the influence of ionic environment on the pattern and degree of labeling.

Authors

Phin Cohen, M. Johan Broekman, Arie Verkley, Johannes W. W. Lisman, Arie Derksen

×

Usage data is cumulative from January 2022 through January 2023.

Usage JCI PMC
Text version 137 0
PDF 25 16
Scanned page 146 1
Citation downloads 18 0
Totals 326 17
Total Views 343
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts