Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Hormonal regulation of human lower esophageal sphincter competence: interaction of gastrin and secretin
Sidney Cohen, William Lipshutz
Sidney Cohen, William Lipshutz
Published February 1, 1971
Citation Information: J Clin Invest. 1971;50(2):449-454. https://doi.org/10.1172/JCI106512.
View: Text | PDF
Research Article

Hormonal regulation of human lower esophageal sphincter competence: interaction of gastrin and secretin

  • Text
  • PDF
Abstract

The interaction of gastrin and secretin, in the regulation of human lower esophageal sphincter competence, was studied in 54 normal subjects. A dose-response curve, for the lower esophageal sphincter, was constructed from the rapid intravenous injections of synthetic gastrin I (amino acid sequence 2-17). This curve was sigmoid shaped and showed a peak response that was 460.0 ±24.0% (mean ±2 SE) of the initial sphincter pressure, at a dose of 0.7 μg/kg of gastrin I. Secretin, either endogenously released by duodenal acidification, or exogenously administered as a single intravenous injection, markedly reduced the peak response of the sphincter to gastrin I. To ascertain the character of this inhibition, a gastrin I dose-response curve was obtained during a continuous intravenous secretin infusion. This curve showed a parallel shift to the right, with the maximal sphincter response to gastrin I still attainable at higher doses. A sphincter, endogenously stimulated by gastrin, showed a dose-related reduction in pressure with rapid intravenous injections of secretin. At the level of resting sphincter pressure, response to secretin diminished, and larger doses were required for comparable reduction in pressure. These studies indicate; (a) Secretin interacts with gastrin in the physiological regulation of human lower esophageal sphincter competence; (b) Secretin is a sensitive inhibitor to gastrin stimulation of the lower esophageal sphincter; (c) This inhibitory effect of secretin is competitive in character.

Authors

Sidney Cohen, William Lipshutz

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 110 0
PDF 11 16
Scanned page 86 26
Citation downloads 10 0
Totals 217 42
Total Views 259
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts