Synthesis of Ribonucleic Acid in Rabbit Blood Cells In Vivo *

ROBERT H. DEBELLIS, NORMAN GLUCK, AND PAUL A. MARKS
(From the Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, N. Y.)

Erythroid cells constitute a model particularly suitable for study of the relationship between cell maturation and nucleic acid and protein synthesis. Circulating reticulocytes, nonnucleated cells capable of prolonged protein synthesis, are derived from cells in the bone marrow that proceed from an apparently multipotential nucleated stem cell through various stages of increasingly mature or differentiated cell types (2-5). Protein synthesis in reticulocytes proceeds on ribosomes (6, 7), in particular those ribosomes characterized by sedimentation coefficients in excess of 110 S, referred to as polyribosomes (8-10). In addition to ribosomal RNA, transfer RNA and, presumably, "messenger" RNA are required for protein synthesis in reticulocytes. In vitro studies have shown that reticulocytes cannot synthesize RNA (8). The present investigations were designed to determine when, in the course of in vivo maturation of erythroid cells, the RNA of reticulocytes is synthesized.

In these experiments, the synthesis of RNA in rabbit erythroid cells in vivo was evaluated by following the time course of incorporation of administered P32 into cellular RNA. The findings indicate that RNA of reticulocytes is synthesized in a relatively early precursor cell stage of erythroid cell maturation. RNA, once synthesized, can remain functional through the reticulocyte stage. Our study also provides evidence that nucleated leukocytes, in contrast to reticulocytes, can synthesize RNA.

Methods

Induction of reticulocytosis in rabbits. Two- to 3-kg rabbits were made anemic by subcutaneous injection of 25 mg phenylhydrazine per day for 4 days (11). This regularly resulted in a reticulocytosis of 60 to 90%.

In vivo labeling of RNA with P32. Twenty-four hours after the last injection of phenylhydrazine, 3 mc of carrier-free P32 (approximately 3 mc per ml) was injected intravenously. Samples of blood were then obtained at intervals of from 30 minutes to 17 days. A total of 14 rabbits was studied. In 10 animals, a single sample of blood was obtained at the times indicated below. In 3 experiments, blood was obtained from the same animal at two different time intervals, and in 1 experiment, at three different time intervals. Reticulocyte ribosomal RNA was purified and analyzed for each of these blood samples. The RNA of cells remaining unlysed after "shock" lysis was analyzed for 7 of the blood samples. These samples were drawn at 30 minutes and 1 (twice), 3, 20, 22, and 42 hours.

Preparation of blood samples. Blood was obtained by cardiac puncture and collected into heparinized syringes.

A sample was removed for enumeration of the erythrocytes, leukocytes, reticulocytes, and nucleated red blood cells (12). The cells were recovered from the blood by centrifugation at 2,000 rpm for 15 minutes. This and all subsequent procedures were performed at 0° C. The plasma was removed and discarded, and the cells were washed once with 0.15 M NaCl. The cells were lysed by a short exposure to a hypotonic solution ("shock" lysis) (8). In this procedure, 4 volumes of MgSO4, 1.5 x 10-4 M, and Tris, 10-4 M, pH 7.5 (Solution 1), was added to the washed cells. After 1 minute the solution was restored to isotonicity by addition of an appropriate amount of 1 N NaCl. This technique preserves leukocytes and tends to disrupt only the red cells (13). To evaluate the contamination of shock lysates by leukocyte RNA, the following experiment was performed. A normal rabbit with 3% reticulocytosis was given 3 mc of carrier-free P32 intravenously and exsanguinated 1 hour later. Theuffy coat containing leukocytes with P32-labeled RNA was mixed with unlabeled cells prepared from a phenylhydrazine-treated rabbit with 80% reticulocytosis. This cell mixture was then subjected to shock lysis as described above. The RNA was isolated 1) from the shock lysate and 2) from the sedimented cells and cell debris remaining after shock lysis. Analysis of these RNA preparations by the technique of sucrose gradient centrifugation revealed that

* Submitted for publication January 3, 1964; accepted February 17, 1964.

This work was supported in part by grants CY 2332 and GM 07368 from the U. S. Public Health Service and by grant NSF GB 310 from the National Science Foundation.

A portion of these data was presented at the Annual Meeting of the American Federation for Clinical Investigation, Atlantic City, N. J., May 1963, and appeared in abstract form (1).
the RNA of shock lysates had detectable P32 associated only with 4 S RNA, whereas the RNA of the sediment of the shock lysate had a heterogeneous pattern of P32 similar to that illustrated in Figure 6. These data indicate that shock lysates represent primarily reticulocytes. The sedimented cells include leukocytes and reticulocyte stroma and unlysed reticulocytes; this was indicated by direct morphological examination of smears of the sediment.

Isolation and characterization of RNA. RNA was isolated from 1) the total population of washed cells, which includes reticulocytes and leukocytes; 2) shock lysates, which represent primarily reticulocyte lysate; and 3) the sedimented cells and cell debris remaining after shock lysis, which include nucleated cells, reticulocyte stroma, and unlysed reticulocytes. The RNA was isolated by a modification of Kirby's procedure (14); all steps were performed at 4° C. To shock lysates, 0.2 vol of 20% sodium dodecyl sulphate and 1.2 vol of water-saturated phenol containing 0.1% 8-hydroxyquinoline were added. The mixture was shaken for 30 minutes. The aqueous and phenol phases were separated by centrifugation at 12,000 × g for 15 minutes, and the phenol phase was re-extracted with 0.5 vol of Solution 1. The aqueous phase from this extraction was recovered and pooled with the initial aqueous phase. The pooled aqueous phases were re-extracted with 1 vol of water-saturated phenol containing 0.1% 8-hydroxyquinoline and the phases again separated by centrifugation. Bentonite (15) was added to the aqueous phase to a final concentration of 0.05% and the mixture centrifuged at 25,000 × g for 15 minutes. The supernatant fluid was recovered, and NaCl was added to a final concentration of 0.1 N. The RNA was precipitated by the addition of 2 vol of 95% ethanol. The mixture was then kept at −20° C for a minimum of 8 hours. The precipitated RNA was recovered by centrifugation and redissolved in a minimal volume of 0.1 N Na acetate buffer, pH 5.0. Total washed cells and the sediment of the shock lysis were resuspended in 4 vol of Solution 1 and then processed as described for the shock lysates.

RNA was measured by determining the ultraviolet (UV) absorbance at 260 nm. The extinction coefficient for RNA was found to be 24.0 OD per mg, a value in agreement with a previously published figure (16).

RNA was characterized by its sedimentation properties in sucrose gradients (8, 17). The conditions of centrifugation are indicated in the legends for the appropriate figures.

Radioactive phosphorus incorporation into purified RNA was determined on fractions of the samples to which 100 μg of albumin was added; the mixture was then precipitated in 5% trichloroacetic acid (TCA) at 0° C. The precipitates were collected by filtration on Millipore filters,1 washed thoroughly with 5% TCA, dried, and counted in a low-background end window gas-flow counter. All radioactivity measurements were corrected for P32 decay (half-life = 14.3 days).

Determination of acid-soluble, P32-labeled substances. For determination of acid-soluble P32 in whole blood, a volume of 10% TCA was added to an equal volume of whole blood. The insoluble material was removed by

centrifugation and the radioactivity in the supernatant fluid measured. For determination of intracellular acid-soluble P32, the washed cells were lysed with an equal volume of 10% TCA, the acid-soluble material was recovered, and its content of P32 was determined.

Chromatographic separation of P32-labeled intracellular acid-soluble substances was carried out by the procedure of Smith and Markham (18), utilizing descending chromatography on Whatman 1 paper and in a 1-dimensional tertiary-butanol, HCl system. Known nucleotide mono- and triphosphates and carrier-free P32 were used as markers. Radioactivity was measured by cutting the chromatograms into 1-inch horizontal and \(\frac{1}{2}\)-inch vertical strips. Each rectangle of paper 1 inch \(\times\) \(\frac{1}{2}\) inch was counted in the gas-flow counter.

Analysis of base composition of RNA. Analysis of the distribution of radioactivity in the nucleotides of the purified RNA labeled with P32 was performed according to the method of Davis, Carlucci, and Roubein (19).

Results

P32 clearance from whole blood and reticulocytes. To evaluate the time course of labeling of the RNA of erythroid cells, one must know the rate of clearance from these cells of P32-labeled precursors of RNA. The rate of clearance of P32-labeled inorganic phosphorus and nucleotides from the peripheral blood was observed. After injection of P32, samples of blood were obtained at intervals between 1.5 minutes and 145 hours. The acid-soluble P32 fraction (which includes inorganic phosphorus and nucleotides) in whole blood and in blood cells was measured. In addition, the intracellular acid-soluble P32-labeled substances were partitioned by chromatography (18) so that both inorganic and organic fractions could be measured separately.

By 6 minutes after P32 administration, the maximal level was reached of radioactivity of inorganic phosphate and of the mono- and tri-nucleotides in the whole blood, and, more significantly, in the intracellular pools. At 12 minutes after injection of the isotope, the radioactivity in the intracellular acid-soluble components had decreased to 66% or less of the maximal observed values (Figure 1). This indicates that clearance of P32 was rapid, and the label in RNA was probably incorporated predominantly within 30 minutes after isotope administration. Previous *in vitro* studies with rabbit blood cells demonstrated that in those cells capable of RNA synthesis, i.e., leukocytes, incubation with P32 for 3 minutes was sufficient to label each of the four nucleotides of RNA (20).

Time course of incorporation of P32 into reticulocyte RNA. RNA purified from shock lysates and analyzed on sucrose density gradients separated into three major UV absorbing peaks (Figure 2). Based on studies of mammalian RNA, sedimentation coefficients of 4 S, 18 S, and 28 S, respectively, have been assigned to these peaks (21, 22). The slowest sedimenting component, corresponding to a sedimentation coefficient of 4 S, presumably represents primarily transfer RNA, and the remaining two peaks correspond to ribosomal RNA (23).

Radioactivity was associated with the 4 S component in as short a time as 30 minutes after P32 administration. At this time no detectable label was associated with ribosomal RNA corresponding to 18 S and 28 S RNA (Figure 2). The low level of P32 associated with the 4 S component at 30 minutes need not reflect synthesis of this RNA. Radioactivity in the 4 S component could be the result of incorporation of the P32 into the terminal adenosine monophosphate of transfer RNA. Holt, Herbert, and Joel (24) have shown that more than 95% of the P32 in-
FIG. 3. Sedimentation of purified RNA labeled in vivo with P32. RNA was isolated from shock lysates of washed cells obtained 3 hours after the iv administration of P32. Components A, B, and C and conditions of centrifugation are described in the legend for Figure 2, except that centrifugation was performed for 15 hours in the model L ultracentrifuge.

corporated into the 4 S RNA by rabbit reticulocytes in vitro is located in the phosphorus of the terminal nucleotides.

Reticulocyte ribosomal RNA, as represented by "18 S" and "28 S" RNA, remained virtually unlabeled for the first 2 hours after P32 administration. By 3 to 5 hours, P32 associated with ribosomal RNA was detected. The specific radioactivities of 18 S and 28 S RNA were approximately equal (Figure 3). With longer periods of in vivo labeling there was a progressive rise in the specific activity of the 18 S and 28 S, as well as of the 4 S, components with a maximal value being reached at 40 to 42 hours.

FIG. 4. Sedimentation of purified RNA labeled in vivo with P32. RNA was isolated from shock lysates of washed cells obtained 42 hours after the iv administration of P32. Components A, B, and C and conditions of centrifugation are described in the legend for Figure 2, except that centrifugation was performed for 141 hours in the model L Spinco ultracentrifuge.

The specific radioactivity of the 28 S, 18 S, and 4 S RNA purified from shock lysates of blood obtained at the times indicated after P32 was administered. Each point represents one determination on a given animal. Multiple samples from the same animal are shown as connected points. Specific radioactivity of the RNA was determined for the peak tube for each of the components separated by sedimentation in sucrose density gradients. Shaded line was drawn by eye to fit all the points.

FIG. 5. Time course of appearance of labeled RNA in circulating reticulocytes. The specific radioactivity of the 28 S, 18 S, and 4 S RNA purified from shock lysates of blood obtained at the times indicated after P32 was administered. Each point represents one determination on a given animal. Multiple samples from the same animal are shown as connected points. Specific radioactivity of the RNA was determined for the peak tube for each of the components separated by sedimentation in sucrose density gradients. Shaded line was drawn by eye to fit all the points.
Erythroid cell RNA synthesis

TABLE 1

<table>
<thead>
<tr>
<th>Ribosomal RNA fraction</th>
<th>Analysis</th>
<th>AMP</th>
<th>GMP</th>
<th>CMP</th>
<th>UMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 S</td>
<td>Ultraviolet†</td>
<td>16.0</td>
<td>35.9</td>
<td>32.5</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>Radioactive</td>
<td>16.9</td>
<td>34.8</td>
<td>30.9</td>
<td>17.4</td>
</tr>
<tr>
<td>18 S</td>
<td>Ultraviolet</td>
<td>20.2</td>
<td>30.3</td>
<td>29.8</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>Radioactive</td>
<td>20.8</td>
<td>31.2</td>
<td>27.8</td>
<td>20.1</td>
</tr>
</tbody>
</table>

† RNA was purified from shock lysates of washed cells obtained 42 hours after P32 administration. The purified RNA was fractionated into 28 and 18 S components by sedimentation in sucrose density gradients. Analysis of RNA isolated from reticulocytes harvested 8 hours after P32 administration yielded results similar to those presented above.

Ribosomal RNA fraction corresponds to one responding in evidence that the P32 associated with reticulocyte RNA at 42 hours represented newly synthesized nucleic acid and not merely terminal nucleotide exchange was provided by determining the distribution of radioactivity in the nucleotides of the various RNA components. An excellent correspondence was found between the nucleotide composition based on absorbancy measurements and P32 radioactivity assays of the RNA (Table 1). A distinct difference between the base composition of 28 S and 18 S RNA was observed. This agrees with recent findings that the two ribosomal RNA molecules in the developing chick embryo differ in their base composition (25). These observations are consistent with the demonstration that in *Escherichia coli* the two components of ribosomal RNA are derived from different loci on the DNA (26).

At no time did the analysis of the total RNA of reticulocytes reveal a labeled component present in trace amounts, i.e., a component not corresponding to one of the major peaks of RNA.

Time course of incorporation of P32 into RNA of sediment of shock lysis. RNA was purified from the sediment of the shock lysis, which includes leukocyte and reticulocyte RNA. This RNA, analyzed on sucrose density gradients, separated into three major UV absorbing components that were similar to those observed with reticulocyte RNA. However, this RNA isolated between 1/2 hour and 2 hours after P32 administration showed a labeled component that sedimented diffusely through the gradient and had no apparent association with any of the three major RNA components (Figure 6). This heterogeneous RNA component was still present at 5 hours.

FIG. 6. SEDIMENTATION OF PURIFIED RNA LABELED IN *VIVO* WITH P32. RNA was isolated from the sedimented cells and cell debris remaining after shock lysis of washed blood obtained 4 hour after the iv administration of P32. Components A, B, and C and conditions of centrifugation are described in Figure 2.
Discussion

Reticulocytes cannot synthesize RNA in vitro (8). In this study, we found that, after P32 administration to anemic rabbits, the maximal level of radioactivity in RNA of circulating reticulocytes is not achieved for 40 to 42 hours, and no labeled reticulocyte ribosomal RNA is detectable for at least 2 to 3 hours. Taken together, these observations indicate that the RNA in circulating reticulocytes must be synthesized at an earlier stage in erythroid cell maturation.

Based on the work of several previous investigators (e.g., 2-5, 27), an approximate time sequence of erythroid cell maturation can be constructed. The earliest identifiable cell in the erythroid series is the proerythroblast. In animals without anemia, it is estimated that four divisions ensue from the early erythroblast through the basophilic normoblast and polychromatophilic normoblast stages to the orthochromic normoblast stage. At this stage in maturation, no further cell division occurs, and the reticulocytes are formed presumably by extrusion of the nucleus (28). Estimates have been made (2-5, 27, 29) that the generation time of the various stages of erythroid maturation is approximately 15 to 24 hours. In animals made anemic by blood loss or phenylhydrazine, evidence indicates that erythropoietic stimulation involves fewer divisions rather than an alteration in generation time (2, 27, 30).

Thus, these authors suggested that a polychromatophilic normoblast or a basophilic normoblast may mature directly to a reticulocyte which is released into the circulation. Our finding that maximally labeled RNA in circulating reticulocytes of anemic rabbits appears approximately 40 to 42 hours after administration of P32 (Figure 5) suggests that maximal RNA synthesis occurs at a relatively early precursor erythroid stage, probably before the orthochromic normoblast. The presence of labeled ribosomal RNA in circulating reticulocytes as early as 3 to 5 hours after P32 administration could represent synthesis in a late basophilic or polychromatophilic normoblast just before its maturation to a reticulocyte and release into the circulation. These interpretations agree with the findings and conclusions of Borsook, Lingrel, Scaro, and Millette (2).
ERYTHROID CELL RNA SYNTHESIS

based on radioautographic observations on the
time course of incorporation of tritiated uridine
into bone marrow cells of rabbits with an anemia
comparable to that of the animals used in this
study. Grasso, Swift, and Ackerman (31) have
suggested that RNA synthesis by erythroid cells
cesses at a stage before the basophilic normoblast
when the nucleolus is lost. The available data
permit no definitive conclusion; however, the
present findings are more consistent with the
interpretation that the synthesis of RNA continues
beyond the basophilic normoblast. Although there
is considerable evidence that the nucleolus is an
active site of RNA synthesis (32), its presence
is not required for the formation of RNA in
nuclei (33).

A rapidly labeled RNA, heterogeneous in its
sedimentation characteristics and not correspond-
ing to the major components of RNA, was found
in leukocytes. Similar findings have been reported
for several other mammalian cells, including
human amniotic cells (34) and Hela cells in tissue
culture (35) and also chick embryo (25), liver
(36), and leukocytes of rats, normal humans, and
patients with chronic lymphatic leukemia (37).
This relatively rapidly synthesized RNA fraction,
present in trace amounts in these cells, may in-
clude messenger RNA, i.e., that RNA which
transfers information from DNA and becomes
attached to ribosomes (20, 25, 35–37) and pos-
sibly to ribosomal precursor RNA.

No rapidly synthesized heterogeneous RNA
was demonstrable in reticulocytes, further indi-
cating that these cells do not make messenger
RNA. It is likely that the informational RNA in
reticulocytes exists in a complex with ribosomes
forming the polyribosomes that are established as
the site of protein synthesis in these cells (8–10).
These observations support the concept that the
ribosome complex associated with the information
directing protein synthesis in reticulocytes is rel-
tively stable, being synthesized at an earlier pre-
cursor cell stage of maturation. As previously
suggested (8), the hypothesis that a relatively
stable form of RNA contains the information for
protein synthesis probably need not be restricted
to erythroid cells that mature to a nonnucleated
form. Evidence (35–40) has accumulated to
suggest that this concept may have broader appli-
cability, particularly to mammalian cells that
achieve a fixed stage of differentiation.

Summary

Rabbits with a phenylhydrazine-induced reticu-
locytosis were given P32, and a study was made of
the time course of incorporation of this precursor
into various components of the RNA isolated
from circulating blood cells.

No radioactivity was associated with reticulocy-
tocyte ribosomal RNA before 2 to 3 hours after in-
jection of the isotope. The maximal level of
specific activity of reticulocyte RNA was achieved
at 40 to 42 hours after P32 administration. In
contrast to reticulocytes, nucleated leukocytes con-
tained a heterogeneously sedimenting labeled RNA
component within 30 minutes after being intro-
duced to the isotope. These data suggest that
reticulocyte RNA is synthesized predominantly
before the orthochromic normoblast stage of
erythroid cell maturation. The RNA in reticu-
locytes that directs protein synthesis is probably
associated in a relatively stable form with the
polyribosomes.

Acknowledgment

The authors express their thanks to Dr. Rifka
Rudner for advice concerning methods for performing
base analyses.

References

1. DeBellis, R. H., N. Gluck, and P. A. Marks. Rib-
onucleic acid (RNA) synthesis in rabbit blood
Millette. Synthesis of hemoglobin in relation to
the maturation of erythroblasts. Nature (Lond.)
1962, 196, 347.
3. Lajtha, L. G. On DNA labeling in the study of the
dynamics of bone marrow cell populations in The
Kinetics of Cellular Proliferation, F. Stohlman,
173.
4. Bond, V. P., T. M. Fliedner, E. P. Cronkite, J. R.
Rubini, and J. S. Robertson. Cell turnover in
blood and blood forming tissues studied with triti-
ated thymidine in The Kinetics of Cellular Pro-
liferation, F. Stohlman, Jr., Ed. New York,
Grune & Stratton, 1959, p. 188.

NOTICE TO AUTHORS

Effective January 1965, THE JOURNAL OF CLINICAL INVESTIGATION will charge $10.00 per page for each article published, provided that the author's research funds or the institution that supported the research can bear this cost.