JCI The Journal of Clinical Investigation

HEMODYNAMIC RELATIONSHIPS OF ANAEROBIC METABOLISM AND PLASMA FREE FATTY ACIDS DURING PROLONGED, STRENUOUS EXERCISE IN TRAINED AND UNTRAINED SUBJECTS

Leonard A. Cobb, Willard P. Johnson

J Clin Invest. 1963;42(6):800-810. https://doi.org/10.1172/JCI104772.

Research Article

Find the latest version:

https://jci.me/104772/pdf

HEMODYNAMIC RELATIONSHIPS OF ANAEROBIC METABOLISM AND PLASMA FREE FATTY ACIDS DURING PROLONGED, STRENUOUS EXERCISE IN TRAINED AND UNTRAINED SUBJECTS *

BY LEONARD A. COBB AND WILLARD P. JOHNSON

(From the Department of Medicine, University of Washington School of Medicine, Seattle, Wash.)

(Submitted for publication November 30, 1962; accepted February 13, 1963)

Many of the physiological responses to exercise are known to be modified in physically trained subjects. Athletes, compared to untrained persons, are known to have a slower heart rate with increased work capacity per beat (1, 2), greater stroke volume (3), more efficient respiration with decreased minute ventilation (4), larger maximal oxygen intake (5), and less accumulation of lactic acid during exercise (6, 7). Red-cell and plasma volumes are probably larger in athletes than in untrained subjects (8). A measurable result of physical training is increased endurance for muscular exercise. The present investigation was designed to evaluate hemodynamic as well as certain carbohydrate and lipid responses that might help to explain the greater endurance in persons with increased capacity for strenuous exercise. A constant speed and grade of treadmill walking was chosen so that sedentary subjects would reach their limits of endurance within about 30 minutes. Since this same work load was only of moderate severity for physically trained persons, they were expected to continue exertion for a considerably longer time.

MATERIAL AND METHODS

Twenty-six studies were performed on 24 normal male volunteers, 19 to 44 years old (mean, 29 years). The subjects were recruited from the environs of the University of Washington and from a group of active mountain climbers. The sedentary group consisted of 6 university students, 3 physicians, and 5 white-collar workers. In the physically active group, there were 7 active mountain climbers, a varsity crewman, a semiprofessional bicyclist, and one university employee who walked several miles daily. The average age of the sedentary subjects was 31.2 years and that of the other group, 24.4 years. One subject in each group (no. 10 and 16) was studied twice; because of technical difficulties, the first study on Subject 16 was stopped after 30 minutes and repeated at a later date. The studies were performed in an air-conditioned laboratory during the morning when subjects were in the postabsorptive state. A Cournand needle was placed in the radial or brachial artery and either a polyethylene catheter was threaded into the axillary vein, or a cardiac catheter passed to the superior vena cava via an antecubital vein. Subjects were then allowed to rest in the supine position for approximately 45 minutes, when samples of arterial blood were taken and heart rate was recorded by an electrocardiograph.

Subjects then walked on a motor-driven treadmill at 3.0 miles per hour and an 18% grade to the point of severe fatigue, or for at least an hour. Severe fatigue and dyspnea forced the "sedentary" subjects to stop walking after 15 to 36 minutes, whereas the "physically active" men continued for at least an hour without evidence of significant fatigue or desire to rest.

Arterial blood samples for free fatty acids (FFA), lactate, pyruvate, and glucose were drawn at least once in the first 5 minutes of exercise and at 5- to 10-minute intervals throughout exercise. Samples were also taken during recovery (supine position) in most instances. The total amount of blood removed was 250 to 300 ml. Cardiac output, oxygen consumption, and pulmonary ventilation were usually measured 2 or 3 times during exercise. Heart rate was monitored frequently by the electrocardiograph.

Cardiac output was measured by the dye dilution technic with collection of multiple 1-second samples of arterial blood after injection of Evans' blue dye through the venous catheter (9). Ventilation was measured by collection of expired air through a low-resistance valve into a Douglas bag, and oxygen consumption was calculated from oxygen content of expired air as determined by the Scholander technic (10), or the Pauling paramagnetic oxygen analyzer. In six instances, ventilation and oxygen consumption during exercise were measured with a 13.5-L Collins respirometer before or after the prolonged exercise test.

Arterial concentrations of lactate were determined by the method of Barker and Summerson (11) with Huckabee's modification (12), pyruvate as described by Segal, Blair, and Wyngaarden (13), and FFA by Dole's

^{*} Supported in part by U. S. Public Health Service grant H908 and research career program award 4570 from the National Heart Institute, Bethesda, Md.; presented in part at the meeting of the Western Society for Clinical Research, Carmel, Calif., January 26, 1962.

	Ý03	L/min/m ²	1,141	1,192	1,193 1,269 807	1,119	945	1,228	1,180	1,410	711,1	1,110	1,143	1,307	633	1,207	1,093 907	893	1.066	
	∨40 hin											53 7	52.1	63.3	41.4	75.0	70.1 57.8	52.2	58.2	
index	1827 min	al / m ²		59.7	57.8	49.1	56.9	48.3	45.2 68.1	55.0		55.9	45.9	64.3	62.7	100.1	77.3 56.0	55.0	65.0	
Stroke	10-14 min	ml/be	51.7	52.1	75.8 67.9	35.6	58.7	68.6	64.6 62.9 55.4	59.6		65.5 60.0		0.00 77.5	54.5				64.7	
	4-4 A-1			60.0	76.2 72.0		80.1	09.5 58.2	51.0 67.6 40.5	62.3		68.6 61.6	55.1	02.0 74.6	7 78	97.8	90.0 75.5	53.9	73.5	
	√40 min											179	172	164	141 162	136	140	150	160	
rate	18-27 min	'min	177	190	180 168	190 184	172	183	185 191	183		158 165	153	160	132 144	128	148	135	148	
Heart	10-14 min	beats	178	183 183	180	106	174	175	174 180 175	176		144 155	140	159	123 136	132	136	133	141	
	4-6 min		149 161	120	156	154 161	100 100 100	100	109 175 167	160		136 141	138	138	116	128	125	129	133	
	40 10 10 10 10 10 10 10 10 10 10 10 10 10											9.60	8.97 11 07		5.84	10.20	9.24	1.13	9.22	, si
index	18–27 min	n/m^2		11.34	9.48	9.34	10.36 9.03		8.30 13.00	10.13		8.83 9.42	7.02 11 44		8.21 13.40	13.11 0.35	8.18	00.1	9.69	30 minut
Cardiac	10-14 min	L/mi	9.35	9.53 12.96	13.88 10.87	9.10 6.23	10.21	12.01	11.32 9.70	10.53		9.43 9.27	11.00	12.32	10.56			1	9.95	ies after
	4-6 min			9.55 8.66	11.96 10.22		12.82 11.05	9.31	0.02 11.69 6.77	10.07		9.34 8.67	7.69 9.96	10.29	11.41	12.52	10.26		9.85	al difficult
Duration	of exercise	min	20 22	29 15	36 36	23 34	30 S	19 73	21	24		30‡ 66	909	99 90	38	58	000	3 3	8	wice. wice. e of technic
	BSA	m [*] 1al men	1.95 1.95	1.93 1.97	7.00	2.01 2.01	2.01	1.87 1 08	2.19	1.98	'e men	1.90	1.82 2.15	1.83 7.08	5.00	2.03 2.19	1.91	201	1.90	t, studied t t, studied t ped becaus
	Age	years ury norm	33	23 35	31 37	37 34	25	84	30	e 31	Ily activ	25 25	292	19 23	21	33	21 24		6 74	e subject s subject ing stopj
	Subject	no. A. Sedenta	01 02	03 04	885	888	10* 11*	12	114	Average	B. Physica	16† 17†	10	20	55	24	25 26		Average	* Sam † Sam ‡ Testi

TABLE I Hemodynamic responses during exercise in sedentary normal men and in physically active men HEMODYNAMIC AND METABOLIC RELATIONSHIPS IN EXERCISE

801

method (14) as modified by Trout, Estes, and Friedberg (15) to avoid interference by lactic acid. Glucose was determined by a modified glucose oxidase method (16). The blood samples for lactate and pyruvate were immediately denatured with ice-cold trichloroacetic acid. Excess lactate (XL) was calculated according to Huckabee's description (17), where $XL = (L_n - L_o)$ $-(L_o/P_o)(P_n - P_o)$; L_n and P_n represent the molar concentrations of arterial blood lactate and pyruvate at time n_i and L_o and P_o are the molar concentrations at rest.

The data were analyzed according to periods of exercise 4 to 6, 10 to 14, 18 to 27, and in the physically active group, beyond 40 minutes. Statistical computations were processed by an IBM 709 computer. Probability was estimated by t test.

RESULTS

Hemodynamic responses. The two groups demonstrated several noteworthy differences as well as similarities in the cardiac responses to exercise (Table I). Stroke index was greater in the physically active group during all comparable periods of exercise (Figure 1). The average stroke index in the first 40 minutes of exercise was 59.4 ml per beat per m² in the sedentary group and 68.3 ml per m² (15% greater) in the physically active group (p < .02). Heart rate, as might be expected, was greater during each period of exercise in the sedentary group, where all subjects developed marked fatigue and dyspnea and stopped walking after 15 to 36 minutes (average, 23.7 minutes). The average minute heart rates in the sedentary group were greater by 27, 35, and 36 beats during minutes 4 to 6, 10 to 14, and 18 to 27, respectively. Heart rate rose progressively and significantly during exercise in all subjects (Figure 1). In both groups, the increase in heart rate was accompanied by a significant reduction in stroke index. Compared to the stroke index during minutes 4 to 6, there was an average fall of 16% during minutes 18 to 27 of exercise in the sedentary group (p = .03) and 11% in the physically active group (p = .03). The final stroke index (40 to 60 minutes) in the physically active group was 14% less than the first determination during minutes 4 to 6 of exercise (p < .001).

The average oxygen consumption was 1,119 ml per m² in the sedentary group and was not significantly different from the mean of 1,066 ml per m² in the physically active group. Average total pulmonary ventilation was 60.7 L per minute in the sedentary subjects and 46.0 L per minute in the physically active group during the first 30 min-

FIG. 1. AVERAGE HEART RATE AND STROKE INDEX DURING EXERCISE (walking at 3 mph, 18% grade).

utes of exercise. The average oxygen pulse in the sedentary group was 6.4 ml per beat per m² and was significantly less than the average of 7.5 ml per beat per m² in the other group (p < .001).

In 12 subjects (4 sedentary and 8 physically active), measurements of oxygen consumption were repeated at intervals greater than 20 minutes. The variations in replicate oxygen consumption averaged 4.7% and ranged from + 16 to - 11%.

As mentioned above, heart rate in the sedentary group was considerably greater than in the physically active group. Stroke index in the former group averaged less, however, so that the cardiac index was virtually equal in the two groups (Figure 2). Cardiac index did not show any consistent change during the period of exercise, and the averages in the sedentary group were 10.1, 10.5, and 10.1 L per minute per m^2 during minutes 4 to 6, 10 to 14, and 18 to 27, respectively. In the physically active group, comparable values for average cardiac index were 9.9, 10.0, and 9.7 L per minute per m^2 (Figure 2). Although there was usually little variation of cardiac index in a given subject during the exercising period,

the range of cardiac index in both groups was considerable, from 6.7 to 12.8 L per minute per m^2 in the first period of sampling. The calculated arteriovenous oxygen differences averaged 110.0 and 111.8 ml per L in the sedentary and physically active groups, respectively.

The arterial hematocrit did not change during the exercise (average change from the first to last determination was -.001%), and the average hematocrit in both groups was 48%.

Anaerobic metabolism. Striking differences in arterial lactate and calculated excess lactate (XL)

concentrations were observed (Figure 3). All subjects showed a prompt rise in XL in the first 5 minutes of exercise. The sedentary subjects continued to accumulate XL, and at the time of "maximal" endurance (24 minutes), the average XL was 5.28 mM. In contrast, XL was only 0.55 mM in the physically trained subjects after an average of 66 minutes of exertion (p < .001), and they noted little or no fatigue (Table II, Figure 3).

The rate of increase of XL was greatest in the first few minutes of exercise. The physically active group demonstrated an initial rise with a peak in minutes 2 to 5. This was usually followed by a decrease in XL and a subsequent plateau at a low level (Figure 3). Thus the average XL in this group was 0.84 mM in minutes 3 to 5 and fell to 0.45 mM in minutes 14 to 16, whereas average levels of XL in the sedentary group were 3.26 and 5.08 mM in the same periods (p < .003)(Table II). XL in the sedentary subjects tended to reach a plateau near the end of endurance, and in 3 instances it fell moderately in the final minutes (Figure 3). Nevertheless, XL continued to increase to a greater or lesser degree throughout exercise in the sedentary subjects. In contrast, the peak XL occurred at a much lower level within the first few minutes in the physically active sub-

FIG. 3. ARTERIAL EXCESS LACTATE DURING EXERCISE.

Lactate Pyruvate XL mmoles/L mmoles/L 7.7 .26 5.4 4.4 .18 3.3 6.4 .17 4.8 1.4 .17 4.8 1.4 .17 4.8 3.6 .12 4.7 3.1 .12 2.6 6.0 .12 4.7 3.1 .13 1.1 1.8 .17 4.9 6.1 .17 4.9 6.1 .17 4.9 3.2 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.3 .06 2.0	Lactate 12.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	yruvate XL yruvate XL moles/L 30 .30 10.0 .33 64.6 .17 2.55 .26 7.6 .17 4.6 .13 6.4 .13 6.4 .23 5.1 .23 5.1 .23 5.1 .23 5.4 .23 5.4 .23 5.4 .23 5.4 .23 5.4 .23 5.4 .23 5.1 .13 5.4	Lactate 11.7 Lactate 33.5 88.6 88.6 88.6 88.6 88.6 88.6 88.6 88	Pyruvate mmoles/. 	T TX	Time	Control	Max.*	Final in	Max. in
mmoles/L 7.7	4 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	moles/L 30 10.0 30 54.6 35 356 47.6 17 2.25 17 3.4 17 3.4 24.5 13 5.1 13 5.1 20 1.4 24 2 24 2 24 2 24 2 24 2 24 2 24 2 24	11 17.7.7 1.7.7.7 1.7.7.7 1.7.7.7 1.7.7.7 1.7.7.7 1.7.	mmoles/ 31 25 25 26 26 27 26 13 22 22 22 23	T					ecovery*
7.7 26 5.4 4.4 .18 3.3 4.5 .16 3.3 6.4 .17 4.8 1.4 .17 4.8 5.9 .16 1.16 3.6 .12 4.7 3.6 .12 2.6 3.1 1.2 2.6 3.1 .12 2.6 3.1 .13 1.1 1.8 .13 1.1 3.2 .17 4.9 4.3 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.3 .06 2.0	51 8.8.5.0 7.8.5.5 7.8.7.8.7.8.7.8.9.8.8 8.9.0 8.8.0 8.8.0 8.7.8 7.8.7 8.7.8 7.8.7 8.7.8 7.8.7 8.7.8 7.8.7 8.7.8 7.8.7 8.7.9 7.8.7 8.7.8 7.8.7 8.7.8 7.8.7 8.7.9 7.8.7 8.7.8 7.8.7.8 7.8.7.8 7.8.7.8 7.8.7.8 7.9.7.8 7.8.7.8 7.8.7.8 7.8.7.8 7.8.7.9 7.8.7.8 7.7.8.7.8	240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7 7.7 7.7 7.7 7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	13555555555555555555555555555555555555		min		ionital District	les/L	
7.7 26 5.4 4.4 18 3.3 4.5 116 3.3 4.4 117 3.3 1.4 116 3.3 3.6 112 2.6 3.1 12 4.7 3.1 1.2 2.6 3.1 1.2 2.6 3.1 1.2 2.6 3.1 1.2 4.7 3.1 1.1 1.1 3.2 1.1 4.7 3.2 1.7 4.9 4.3 1.1 4.9 5.3 .06 2.0 2.3 .06 2.0 2.3 .06 2.0	.4 .8 	24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.7 7.7.7 8.6.8 8							
4.4 .18 3.3 4.5 .16 3.3 6.4 .16 3.3 1.4 .16 3.3 5.0 .16 1.8 3.6 .12 4.7 3.6 .12 4.7 3.1 .12 2.6 3.1 .12 4.7 3.1 .13 1.1 1.8 .17 1.1 3.2 .17 4.9 6.1 .17 4.9 2.3 .06 2.0 2.3 .16 3.3 2.3 .16 3.3 2.3 .16 3.3 2.3 .16 2.0 2.3 .16 2.0 2.3 .16 2.0 2.3 .11 1.0 2.3 .16 2.0 2.3 .16 2.0 2.3 .11 1.0	8.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	255 364 255 364 256 356 251 256 356 251 256 356 251 256 256 251 256 256 251 256 256 251 256 256 251 256 256 251 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256	7.7.7 1.1.2 2.2.2 2.4.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	52 135 115 125 126 126 126 126 126 126 126 126 126 126	9.0	20	710	- 91	- 61	
4.5 .16 3.3 6.4 .17 4.8 1.4 .17 4.8 3.6 .12 2.6 3.1 .12 2.6 3.1 .13 1.1 1.8 .17 4.7 3.1 .17 4.7 3.2 .17 4.7 3.2 .17 4.9 3.2 .17 4.9 3.2 .17 4.9 2.3 .06 2.0 2.3 .06 2.0 2.3 .06 2.0	02 02 02 05 05 05 05 05 05 05 05 05 05	25 26 26 26 27 26 27 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	25.3.3.888.3.5.1 25.3.3.888.5.5.1 28.5.2.7.4.6	25 26 11 12 26 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	5.9	21	573	- 209	99 1	+ 328
6.4 .17 4.8 1.4 .17 4.8 2.9 .16 .12 3.6 .12 2.6 3.1 .12 4.7 3.1 .13 1.1 3.2 .17 4.9 3.2 .17 4.9 3.2 .17 4.9 3.2 .17 4.9 2.3 .06 2.0 2.3 .06 2.0	01 0.0.0.4.0.7.0.9.0.0.8 1.0.7.8.7.8.0.8.8.0.8.8 0.0.8.0.8.0.8.0.8.8.0.8.8.0.8.8.0.8.8.0.8.8.0.8.8.0.8.8.0.8.8.0.8	26 7.6 17 4.6 17 20 2.2 2.3 5.1 17 3.4 5.1 17 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	10.1 2.5 2.2 2.7 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	132258	5.4	28	587	-313	-226	- 93
1.4 .14 .14 0.7 2.9 .16 1.8 .12 2.6 3.0 .12 4.7 .13 1.1 3.1 1.3 1.1 1.3 1.1 1.8 .17 1.1 4.9 .17 4.9 3.2 .17 4.9 .17 4.9 4.3 .16 3.3 .16 3.3 2.3 .06 2.0 2.0 2.0 2.3 .11 1.9 1.0 1.0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 132 132 132 132	7.6	15	620	- 383	-213	+ 003
2.9 3.6 3.1 3.1 1.8 1.2 1.2 3.1 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1		2.2 2.2 2.3 2.1 2.3 5.1 5.4 5.4 5.4 5.4 5.4 5.6 5.4 5.6 5.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6			4.4	20	473	- 106	1	+ 205
3.6 .12 2.6 6.0 .12 4.7 3.1 .13 1.1 1.8 .13 1.1 3.2 .17 4.9 6.1 .17 4.9 6.1 .16 3.3 2.3 .06 2.0 2.3 .06 2.0 2.3 .16 2.0		.17 3.4 .23 5.1 .13 6.4 .20 1.4		.13	2.6	32	394	- 142	1	+ 320
6.0 .12 4.7 3.1 .13 1.1 1.8 .13 1.1 3.2 .17 4.9 6.1 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.1 11 10	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.23 5.1 .13 6.4 .20 1.4 .26 2.6	8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	.13	2.1	23	398	-151	- 97	+ 631
6.0 .12 4.7 3.1 1.8 .13 1.1 1.8 .17 1.1 3.2 .17 4.9 6.1 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.2 11 10	8.9.9.8.9.9 8.9.9 8.9.9	.13 6.4 .20 1.4 24 2.6	8 % % % % % % % % % % % % % % % % % % %	.13	7.1	23	865	-476	-476	+ 533
3.1 1.8 1.7 1.7 3.2 6.1 1.7 4.9 4.3 1.6 3.3 2.3 0.6 2.0 2.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1		.20 1.4 24 2.6		14	7.1	26				_
1.8 .13 1.1 3.2 .17 1.1 6.1 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.2 .11 19	2.5 3.0 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	20 1.4 24 2.6	3.2	21		20				
.17 3.2 6.1 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.2 7 11 19	5.8 3.9 6 8 8.8	24 2.6	20,00	17.	1.9	35	972	-315	-194	+1,102
3.2 6.1 .17 4.9 4.3 .16 3.3 2.3 .06 2.0 2.2 11 19	0.0 3.9 8.8			.24	2.6	18				
5.1 6.1 4.3 2.3 2.0 2.0 2.0 2.0 2.0 2.0 11 10	v. 00 v. 00		0.0			22				
6.1 .1/ 4.9 4.3 .16 3.3 2.3 .06 2.0 2.2 7 11 19	8.8		4.0 •			2:				
4.3 .16 3.3 2.3 .06 2.0 2.2 11 19		.18 7.0	8.8	.18	1.6	14				
2.3 .06 2.0 2.2 7.7 11 19	6.4	.22 5.1	6.6	.23	5.3	23	621	-243	-159	+ 390
2.2 2.7 11 10	3.2	.08 3.0	3.2	60.	3.0		297	160	150	403
2.2 11 10										
2.2 11 10			1			1				
77 11 10	1.8		1.7			27	1			
	1.8	.14 0.8	2.0	.13	1.1	64	437	-220	+192	+ 571
2.2 .19 1.5	1.9	.15 0.8	1.9	.16	0.8	26	409	-140	+280	+1,542
2.1 .11 1.0	1.0	.08 0.2	1.1	.08	0.3	56	545	- 248	-270	+ 881
1.7 .12 0.8	1.5	.11 0.7	0.0	.08	0.1	65	489	+012	+273	+ 886
1.1 .12 0.1	1.0	.12 0.1	0.0	.08	0.0	81	335	- 133	+436	+ 843
2.5 .19 1.2	2.1	.17 0.9	3.4	.18	2.2	%	587	-257	+129	+1.150
0.7 .08 0.3	0.3	.07 0.0	0.3	.05	0.0	53	668	-114	+221	+1,141
1.3 .12 0.9	0.0	.11 0.4	0.6	<u>6</u>	0.2	99	818	- 195	+123	+ 807
0.9 .17 0.0	1.0	.13 0.2	1.4	.14	0.6	59	292	- 36	+313	+1.142
1.3 .12 0.7	1.0	.11 0.4	0.5	.07	0.2	09	826	-464	-267	+ 259
1.7 .13 0.8	1.3	.12 0.5	5 1.3	.11	0.6	61	541	- 180	+143	+ 922
0.9 .06 0.7	0.7	.05 0.4	l 1.0	90.	0.7		259	146	240	468
/ 003 / 03 / 003	001	/ 003 / 0	100 / 001	/ 000	100 /		207	207	006	20

TABLE II Arterial lactate, pyruvate, excess lactate, and free fatty acids during exercise

804

, ⁽

LEONARD A. COBB AND WILLARD P. JOHNSON

* Change from control values. † Probability of differences in means of the two groups due to chance. jects and then fell without further significant change for the remainder of the exercise period.

There was no significant correlation between the final XL during exercise and either cardiac index (r = -0.20) or stroke index (r = -0.35). Similarly, the increment in heart rate was not correlated with XL at the end of exercise. The final level of XL, however, was correlated with the duration of exercise when all subjects were considered (r = -0.81).

Arterial pyruvate concentrations during exercise were also different in the two groups. The average resting values of 0.08 mM were identical; however, the pyruvate values during exercise

FIG. 4. CHANGES IN ARTERIAL GLUCOSE DURING EXERCISE.

were significantly higher in the sedentary group after the first few minutes of exercise (Table II). In minutes 14 to 16, the average concentration in the sedentary subjects was 0.22 mM, compared to 0.12 mM in the physically active group (p < .003). After an hour of walking, the pyruvate value in the latter group was essentially unchanged and significantly less than the final pyruvate in the sedentary subjects (p < .002).

Arterial concentrations of glucose in some subjects varied considerably in magnitude and direction during this exercise. By the end of exercise, the average change in glucose was -7.0 mg per 100 ml in nine sedentary subjects and +0.5 mg per 100 ml in eight of the physically active group so studied (Figure 4). The change in glucose was not correlated with cardiac index, change in heart rate, or stroke index. Final XL during exercise was poorly correlated with the change in glucose when both groups were examined (r =0.47); however, in six sedentary individuals where correlation could be made, there was a relationship significant at the 5% level of confidence (r =+ 0.83).

Plasma FFA. The concentration of arterial plasma FFA fell promptly after exercise was initiated, as shown by the mean curves for the two groups in Figure 5. The average nadir in these curves occurred at 10 and 9 minutes in the sedentary and physically active groups, respectively, and represented respective decreases of 39 and 33% (Table II). These values of FFA are not corrected for the reduction in plasma volume known to occur with exercise. If a correction were made, the exercise values would be approximately 15% lower and the changes somewhat greater (18).

After the initial fall, FFA slowly rose as exercise was continued. In the sedentary subjects, the average FFA was still 26% below the control level at the time of "maximal" endurance. A similar rise in FFA was seen in the other group (Figure 5), where capacity for exercise was markedly greater and the continued rise of FFA more apparent; just before exercise was stopped, after an average of 63 minutes, the mean FFA was 26% greater than the pre-exercise concentration.

After exercise, a rapid increase in FFA was seen in all subjects (Table II), usually reaching

FIG. 5. AVERAGE CHANGES IN ARTERIAL FREE FATTY ACIDS DURING EXERCISE. The mean control values of 621 and 541 μ M per L are indicated at the left.

a peak in the first 10 minutes of recovery. In the physically active group, the mean peak increase was 922 μ moles per L above the pre-exercise value, a significantly greater rebound than that of 390 μ moles per L observed in the sedentary subjects (p < .02). If, however, the recovery concentrations are compared to FFA in the last minute of exercise, the "rebound" of 779 μ moles per L in the physically active subjects is not significantly different from that of 561 μ moles per L observed in the sedentary group (p > 0.2).

DISCUSSION

The quantitative differences in the hemodynamic responses to exercise between the two groups are of interest. In one group, this level of exercise represented the subjects' maximal endurance after an average of 24 minutes. On the other hand, for the physically active group, largely represented by well-trained mountain climbers, this same level of exercise was submaximal even after an hour. This latter group exhibited a significantly lower heart rate and greater stroke index during exercise. Since the average cardiac index was nearly equal in the two groups (Figure 2), the greater endurance of the physically active group cannot be accounted for by enhanced cardiac output. It would appear more likely that under the specific conditions of these studies, the basis for the prolonged endurance and lack of fatigue was related to peripheral circulatory or metabolic adaptions, or both, associated with physical conditioning.

Freedman and colleagues (19) studied three members of a track team, two of them before and after 2 months of competitive running. These investigators, using cardiac catheterization technic and direct measurement of pulmonary arteriovenous differences, found no changes in cardiac outputs or arteriovenous differences after further physical conditioning. Their observations were made at moderate levels of exercise and for short periods of time. They did not study sedentary subjects or maximal responses to exercise; however, they speculated that local tissue factors might be more important than cardiorespiratory phenomena in accounting for the benefits of training.

A continuous increase in heart rate was observed in both the sedentary and physically active groups (Figure 1). Although heart rate during light exercise is known to be quite stable for long periods, heavier work is frequently accompanied by a secondary rise, and exhausting work by a continuous increase in heart rate (20, 21). The mechanisms responsible for the slowly increasing heart rate are not known; possibly this may be due to elevated body temperature. Since the physically active group accumulated almost no XL after the first few minutes, anaerobic metabolism and its consequences probably were not of significance in augmenting the heart rate of this group. The larger increment in heart rate observed in the sedentary subjects, however, may have been in part secondary to the metabolic changes of anaerobiosis. The reduction in stroke index observed during prolonged exercise is not readily explained. Although stroke index did not fall regularly in all subjects, the changes between the first and last observations during exercise appear to be significant, particularly in the physically active group. Whatever the mechanisms, a "steady state" of stroke volume and heart rate was not realized in either group under the conditions of this study. It is unlikely that the removal of approximately 250 ml of blood over this period would account for the reduction in stroke index. Previous studies (22) have shown that acute bleeding of 2 to 3 times the amount slowly removed in the present study produced a 12% reduction in resting stroke volume. Since the hemodynamic effects of acute bleeding are to some extent transient (23) and since the amount removed was relatively small, we believe that the observed reduction of stroke index was largely unrelated to loss of blood volume.

Accumulation of XL in the sedentary individuals clearly separated them from the physically active subjects (Figure 3). Since the accumulation of XL probably reflects intracellular oxidative potential and appears to be a good estimate of the degree of anaerobic glycolysis (17), we conclude that the sedentary group responded to this strenuous exercise with increased anaerobic muscle glycolysis. It has been known for some time that athletes, compared to untrained persons, have lower levels of blood lactic acid during exercise (6, 24, 25), and previous investigators have attempted to correlate venous lactic acidemia with oxygen debt (26, 27). Since blood lactic acid includes variable amounts of lactate unrelated to hypoxia, Huckabee's concept of XL, compared to the use of forearm venous lactic acid, affords considerable theoretical advantage for the recognition and quantitation of anaerobic metabolism (17).

Bang (24) as well as Tepperman and Tepperman (28) suggested that lactic acid accumulation during exercise was secondary to inadequate cardiorespiratory responses immediately after the onset of muscular exercise. The initial rapid increase in XL in our subjects tends to support this. The continued rise of XL in the sedentary subjects, the fall of XL in the physically active group, and the finding of nearly equal cardiac outputs in both groups suggest, moreover, that anaerobic metabolism, after the first few minutes, was probably a consequence of peripheral muscle factors rather than secondary to an "inadequate" cardiac output.

It seems probable that anaerobic pathways may be utilized as a result of several hemodynamic mechanisms, including reduction of cardiac output and oxygen transport capacity of blood, alterations in the distribution of blood flow, vascular obstruction, and arteriovenous shunting, all of which may produce relative inadequacy of oxygen diffusion in the capillaries. Two mechanisms that might facilitate muscle oxygen transport in physically trained persons come to mind. First, the capillary bed of hypertrophied muscles may be increased (29). If this is the case, a greater diffusing area per unit of muscle mass would tend to promote oxygen transport to the working muscles.

Secondly, vasomotor control of small vessels might function so as to reduce arteriovenous shunting or otherwise alter circulatory pathways, thereby increasing the perfusion of contracting muscles. In this regard, the responses to the hyperthermia of prolonged exercise might be of considerable importance. The possibility of pulsatile blood flow facilitating cellular metabolism is also an interesting one that would seem to merit further study (30). Also, adaptive metabolic mechanisms might be implicated in facilitating the utilization of more efficient aerobic pathways by athletes and "physically conditioned" persons. In this regard, Revnafarje (31) has reported higher concentrations of myoglobin and certain oxidative enzymes in muscles of persons adapted to high altitude. Studies of muscle biopsies in our subjects are currently in progress.

The two groups could also be separated by the average levels of arterial pyruvate during the later periods of exercise, when pyruvate was significantly less in the physically active subjects. A decreasing pyruvate level during exercise in athletic young men has been reported previously (32, 33). The mechanisms responsible for this phenomenon are not known.

The early fall in FFA with exercise confirms previous reports (34-36). Studies designed to demonstrate the contributions of mobilization and utilization of FFA during short periods of exercise have led to somewhat different conclusions. Friedberg, Harlan, Trout, and Estes (35) concluded that the early effect of exercise was to lower plasma FFA by accelerating its removal from blood. They also estimated a significant increase in FFA flux (the amount of FFA entering and leaving the vascular compartment per minute) during strenuous exercise. Carlson and Pernow (18) infused albumin-bound C14-labeled palmitic acid in a subject, and measured the specific activity of the FFA fraction during and after exercise. In spite of a considerable fall in arterial FFA in exercise and a rebound in recovery, they found no appreciable change in specific activity. They concluded that plasma outflow of FFA regulated FFA concentration in the first minutes of exercise and that the rate of addition to plasma of FFA probably remained rather constant. Our data showing a progressive rise in FFA with prolonged exercise and very high rebounds in recovery are certainly consistent with increased mobilization, as well as utilization, of FFA. The difference in recovery FFA between our two groups is more likely to be related to the longer duration of exercise in the physically active group rather than to fundamental differences in lipid metabolism between the two groups.

It has been suggested that the early fall in FFA with exercise is consequent to the increased blood flow in exercising muscles (37). Supporting evidence for this was the correlation between the augmentation of heart rate and the change in FFA reported by Carlson and Pernow (18) and confirmed to some extent in this study (r = -0.49.

FIG. 6. RELATIONSHIP BETWEEN THE EARLY CHANGE IN FREE FATTY ACID CONCENTRATION AND CARDIAC INDEX.

p < .05). The interpretation that this was related to blood flow, however, was not documented (Figure 6); in fact, there was a tendency for those with the largest outputs to show the least change in FFA (r = 0.44). It would appear that the reduction in FFA and the increased heart rate of exercise are associated phenomena, their correlation being independent of cardiac output per se. It is possible, however, that direct measurements of muscle blood flow might correlate with FFA reduction.

There was a correlation between early FFA change and simultaneous XL (r = -0.48, p = 0.02), indicating a tendency for the sedentary persons with more rapid heart rates and greater anaerobiosis to show a somewhat larger fall in FFA in the first minutes of exercise.

SUMMARY

Responses to prolonged strenuous exercise were compared in a group of sedentary subjects and in a group of well-conditioned, physically active men. An identical speed and grade of treadmill walking was used for all studies. Anaerobic metabolic pathways were utilized to a much greater degree in the sedentary subjects, who became exhausted after an average of 24 minutes. In the physically active group, excess lactate initially rose slightly and subsequently fell to a low plateau for an hour. Although stroke volume was greater and heart rate less in the physically active group, cardiac output was virtually the same in both groups. Thus, the anaerobiosis and poor endurance in the sedentary group could not be explained on the basis of inadequate cardiac output.

These data suggest that increased endurance for exercise in trained persons is, at least in part, a circulatory phenomenon related to distribution of muscle blood flow, or an undefined metabolic adaptation associated with skeletal muscle hypertrophy.

Plasma free fatty acids fell initially and slowly rose above the resting value during prolonged exercise. Further rebound of free fatty acids in recovery was consistent with increased mobilization persisting after exercise. Free fatty acid changes were similar in both groups.

Arterial hematocrits during exercise were equal in both groups and did not change during the exercise period. Heart rate rose progressively during the constant work load in all subjects, and the average stroke index fell significantly by an average of 11 to 16%, indicating that the so-called "steady state" of exercise does not apply to these measurements under the conditions of prolonged, strenuous, upright exercise.

ACKNOWLEDGMENT

The authors are grateful to Dr. Robert A. Bruce for his helpful suggestions and for critical review of the manuscript.

REFERENCES

- Bock, A. V., C. VanCaulaert, D. B. Dill, A. Fölling, and L. M. Hurxthal. Studies in muscular activity. III. Dynamical changes occurring in man at work. J. Physiol. 1928, 66, 136.
- Kjellberg, S. R., U. Rudhe, and T. Sjöstrand. The amount of hemoglobin (blood volume) in relation to the pulse rate and heart volume during work. Acta physiol. scand. 1949, 19, 152.
- Musshoff, K., H. Reindell, and H. Klepzig. Stroke volume, arterio-venous difference, cardiac output and physical working capacity, and their relationship to heart volume. Acta cardiol. (Brux.) 1959, 14, 427.
- Schneider, E. C., and G. C. Ring. The influence of a moderate amount of physical training on the respiratory exchange and breathing during physical exercise. Amer. J. Physiol. 1929, 91, 103.
- 5. Robinson, S., H. T. Edwards, and D. B. Dill. New records in human power. Science 1937, 85, 409.
- Dill, D. B., J. H. Talbott, and H. T. Edwards. Studies in muscular activity. VI. Response of several individuals to a fixed task. J. Physiol. 1930, 69, 267.
- Crescitelli, F., and C. Taylor. The lactate response to exercise and its relationship to physical fitness. Amer. J. Physiol. 1944, 141, 630.
- Kjellberg, S. R., U. Rudhe, and T. Sjöstrand. Increase of the amount of hemoglobin and blood volume in connection with physical training. Acta physiol. scand. 1949, 19, 146.
- Cobb, L. A., R. J. Kramer, and C. A. Finch. Circulatory effects of chronic hypervolemia in polycythemia vera. J. clin. Invest. 1960, 39, 1722.
- Scholander, P. F. Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J. biol. Chem. 1947, 167, 235.
- Barker, S. B., and W. H. Summerson. The colorimetric determination of lactic acid in biological material. J. biol. Chem. 1941, 138, 535.
- Huckabee, W. E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood. J. appl. Physiol. 1956, 9, 163.
- 13. Segal, S., A. E. Blair, and J. B. Wyngaarden. An enzymatic spectrophotometric method for the de-

termination of pyruvic acid in blood. J. Lab. clin. Med. 1956, 48, 137.

- Dole, V. P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 1956, 35, 150.
- Trout, D. L., E. H. Estes, Jr., and S. J. Friedberg. Titration of free fatty acids of plasma: a study of current methods and a new modification. J. lipid Res. 1960, 1, 199.
- Beach, E. F., and J. J. Turner. An enzymatic method for glucose determination in body fluids. Clin. Chem. 1958, 4, 462.
- Huckabee, W. E. Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J. clin. Invest. 1958, 35, 244.
- Carlson, L. A., and B. Pernow. Studies on blood lipids during exercise. II. The arterial plasma-free fatty acid concentration during and after exercise and its regulation. J. Lab. clin. Med. 1961, 58, 673.
- Freedman, M. E., G. L. Snider, P. Brostoff, S. Kimeblot, and L. N. Katz. Effects of training on response of cardiac output to muscular exercise in athletes. J. appl. Physiol. 1955, 8, 37.
- Robinson, S. Physiology of Muscular Exercise in Medical Physiology, 11th ed., P. Bard, Ed. St. Louis, C. V. Mosby, 1961, p. 517.
- Bowen, W. P. Changes in heart-rate, blood-pressure, and duration of systole resulting from bicycling. Amer. J. Physiol. 1904, 11, 59.
- 22. Ralston, L. A., L. A. Cobb, and R. A. Bruce. Acute circulatory effects of arterial bleeding as determined by indicator-dilution curves in normal human subjects. Amer. Heart J. 1961, 61, 770.
- 23. Guyton, A. C., A. W. Linsey, B. N. Kaufmann, and J. B. Abernathy. Effect of blood transfusion and hemorrhage on cardiac output and on the venous return curve. Amer. J. Physiol. 1958, 194, 263.
- 24. Bang, O. The lactate content of the blood during and after muscular exercise in man. Skand. Arch. Physiol. 1936, 74, suppl. 10, 49.
- 25. Holmgren, A., and G. Ström. Blood lactate concentration in relation to absolute and relative work load in normal men, and in mitral stenosis, atrial septal defect and vasoregulatory asthenia. Acta med. scand. 1959, 163, 185.

- Hill, A. V., C. N. H. Long, and H. Lupton. Muscular exercise, lactic acid and the supply and utilisation of oxygen. V. The recovery process after exercise in man. Proc. roy. Soc. B 1925, 97, 96.
- Jervell, O. Investigation of the concentration of lactic acid in blood and urine under physiologic and pathologic conditions. Acta med. scand. 1928, suppl. 24.
- Tepperman, J., and H. M. Tepperman. On the blood lactic acid response to measured exercise in hypoxic human subjects. J. clin. Invest. 1948, 27, 176.
- Petrén, T., T. Sjöstrand, and B. Sylwén. Der Einfluss des Trainings auf die Haufigkeit der Capillaren in Herz und Skeletelmuskulatur. Arbeitsphysiologie 1936, 9, 376.
- Wilkens, H., W. Regelson, and F. S. Hoffmeister. The physiologic importance of pulsatile blood flow. New Engl. J. Med. 1962, 267, 443.
- Reynafarje, B. Myoglobin content and enzymatic activity of muscle and altitude adaptation. J. appl. Physiol. 1962, 17, 301.
- 32. Yanof, Z. A. Effect of exercise on blood pyruvic acid. Observations on trained and untrained normal subjects and on patients with heart disease and with hypertension. Arch. intern. Med., 1943, 72, 239.
- 33. Huckabee, 'W. E. Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O₂-debt. J. clin. Invest. 1958, 37, 255.
- 34. Carlson, L. A., and B. Pernow. Studies on blood lipids during exercise. I. Arterial and venous plasma concentrations of unesterified fatty acids. J. Lab. clin. Med. 1959, 53, 833.
- 35. Friedberg, S. J., W. R. Harlan, Jr., D. L. Trout, and E. H. Estes, Jr. The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J. clin. Invest. 1960, 39, 215.
- 36. Bruce, R. A., L. A. Cobb, and R. H. Williams. Effects of exercise and isoproterenol on free fatty acids and carbohydrates in cardiac patients. Amer. J. med. Sci. 1961, 241, 59.
- 37. Havel, R. J., and A. Goldfien. The role of the sympathetic nervous system in the metabolism of free fatty acids. J. lipid Res. 1959, 1, 102.