JCI The Journal of Clinical Investigation

A PRACTICAL STUDY OF THE AIR CHAMBER MODEL OF THE CARDIOVASCULAR SYSTEM

Sidney Roston, Leonard Leight

J Clin Invest. 1959;38(5):777-783. https://doi.org/10.1172/JCI103859.

Research Article

Find the latest version:

https://jci.me/103859/pdf

A PRACTICAL STUDY OF THE AIR CHAMBER MODEL OF THE CARDIOVASCULAR SYSTEM

BY SIDNEY ROSTON AND LEONARD LEIGHT

(From the Department of Medicine, University of Louisville School of Medicine, Louisville, Ky.)

(Submitted for publication September 9, 1958; accepted January 5, 1959)

Use of the air chamber as a simplified model of the cardiovascular system was studied for many years (1, 2). Subsequently, interest in this model declined, since it failed to yield strikingly useful results. Unfortunately, other methods for describing the behavior of the cardiovascular system in terms of such easily measurable quantities as arterial pressure and pulse rate also were unsuccessful (3, 4). The recent development by one of the authors of a more exact mathematical approach to the air chamber spotlighted the strengths and weaknesses of this model anew (5). Its chief strengths were its great simplicity and the fact that its theoretical behavior agreed with a considerable body of cardiovascular physiology such as the general shape of the arterial pressure curve (5). Its weakness, from the practical viewpoint, was that its application required the use of parameters which could not be determined by direct measurement in the body. The present study of the air chamber model had two objectives. In the first place, an attempt was made to evaluate the closeness of mathematically predicted results to measured data. Then, since the mathematical approach appeared to have validity, the practical usefulness of the model itself was evaluated.

EXPERIMENTAL

The source of experimental data was the human cardiac catheterizations performed at the Louisville General Hospital during the past three years. Only patients with cardiovascular abnormalities requiring further investigation were subjected to cardiac catheterization. Not used in the present study were records incomplete either because of technical difficulties or for other reasons, such as the fact that the cardiac output was not determined in patients below the age of 13 years. In addition, a few catheterizations were omitted because of auricular fibrillation. All other 59 records of the three year period were included, regardless of postcatheterization diagnosis. Previously described techniques of cardiac catheterization were used (6). Data adequate for this study included the output from the left ventricle into the aorta, the average arterial pressure and the arterial pressure tracing.

The quantities necessary for a mathematical description of the chamber model were as follows:

- t = time
- P(t) = pressure in the aorta near the aortic valve. In the present study, this was approximated by the brachial artery pressure (7)
- V(t) = volume equivalent to the aorta
- F(t) = effective rate of peripheral blood flow
- $P_{\rm D}$ = end-diastolic pressure
- P₈ = maximum systolic pressure
- $PP = P_8 P_D = pulse pressure$
- $K = \Delta P / \Delta V$ = elasticity of the aorta
- R = P(t)/F(t) = effective peripheral resistance
- i = seconds between the onset of systole and the occurrence of Pa
- P_i = decrease in pressure in the i seconds after the onset of diastole
- CO = number of liters of blood passing the aortic valve per minute
- P_{av} = average aortic pressure
- a = duration of the cardiac cycle in seconds.

The values which were determined by use of the tracing of the brachial artery pressure included P_D , P_B , PP, i, P_i , a, and the ratio, -K/R (= G) (Figure 1). P_i and G were determined from plots of the natural logarithms of the diastolic pressures in the tracings vs. time. The onset of a rapid drop in aortic pressure was arbitrarily taken as the beginning of diastole. Ordinarily, the time of this rapid drop could be determined within 0.02 second without difficulty. In nearly every case, a straight line represented the relationship between ln P(t) and t during diastole very closely (Figure 2). The value of G was the slope of this line. P_i was also determined from this line, since the initial portion of the actual pressure tracing during diastole

FIG. 1. A PATTERN OF BRACHIAL ARTERY PRESSURE For this curve, a equals 0.8 second.

 FIG. 2. A PLOT OF THE NATURAL LOGARITHM OF P vs. T FOR THE DIASTOLIC PRESSURE OF FIGURE 1
 P₁ equals 12 mm. Hg; -K/R equals 0.72 second⁻¹.

was distorted somewhat from the theoretically anticipated logarithmic decline as a result of the closure of the aortic valve. In each arterial pressure tracing, three consecutive, nearly identical cycles were averaged. Quantities which were independently measured included P_{av} and CO.

Only one equation which could be tested in a practical way was derived from the mathematical formulation. This was

$$P_{av} = \frac{PP + P_i}{aG}.$$
 1)

All of the quantities on the right hand side of Equation 1 were determined from the arterial pressure tracing alone. The value of P_{av} calculated from Equation 1 was then compared with the measured value, and the closeness of the two values provided an indication of the overall reasonableness of the theory. R was determined from the relationship, $R = \frac{60 P_{av}}{CO}$, and substitution of this value of R into -K/R = G yielded K.

RESULTS

The results of the 59 catheterizations were compiled in Table I. The ages of the patients ranged from 14 to 58 years, the average age being 31.5, with a standard deviation of 13 years. There were only six normal catheterization studies. Diagnoses included aortic insufficiency, mitral stenosis, mitral insufficiency, patent ductus arteriosus, peripheral arteriovenous fistula, anomolous pulmonary vein, interauricular septal defect and coarctation of the aorta. The wide range of each of the measured parameters was consistent with the great variety of pathology present.

On the average, the calculated value of P_{av} (= P_{av-e}) was 1.07 ± 0.07 times the measured value (= P_{av-m}), while, if P_i were omitted, P_{av-e} became 0.86 ± 0.09 times P_{av-m} . In each case, the number after the ± sign was the standard deviation. For the six patients with normal catheterization findings, P_{av-c} was 1.04 ± 0.07 times P_{av-m} . On the average, P_i was 25 ± 8 per cent of the corresponding pulse pressure. With use of the directly measured value of P_{av} , the mean value of R was $1,620 \pm 760$ dyne-seconds per cm.⁵, and the average value of K was $1,470 \pm 770$ dynes per cm.⁵, while the average value of K/R was $0.92 \pm$ 0.33 seconds⁻¹. When the calculated value of P_{av} was used, the mean value of both R and K increased by 7 per cent, a change not statistically significant.

DISCUSSION

In the present study, Pav-c was nearly equal to Pav-m for a wide variety of cardiovascular pathology, as well as for normal hearts, over a range of ages from 14 to 58 years. The closeness of the theoretical and measured values of Pav indicated the practical feasibility of the air chamber model, insofar as this could be tested at present. The demonstration of the general validity of the theoretical approach was of considerably greater importance than was mere development of another method for the determination of Pay. From an empirical point of view, indeed, Pav might be more closely and easily approximated by such relationships as the sum of the diastolic pressure and one-third the pulse pressure than by Equation 1. The significance of Equation 1, however, lay in the fact that it was derived from application of the mathematical theory to the chamber model and could have no other origin, pragmatic or theoretical.

Some of the small deviation of P_{av-c} from P_{av-m} was due to errors in the measurements alone, such as those from the use of the Fick principle, and to the fact that all of the measurements were not recorded simultaneously. In addition, the brachial artery pressure differed from the pressure at the root of the aorta, among the differences being a slightly earlier occurrence and slightly greater magnitude of the peak of systolic pressure in the brachial artery than in the aorta (7). The term P_i brought the calculated value of P_{av} considerably closer to the observed value and decreased the deviation of the ratio, Pav-c/Pav-m, from its average value. For individuals undergoing exercise, with rapid heart rate, vigorous heart action and rapid initial decline of diastolic pressure, the relative

	es *
	studi
IEI	atheterization
TABI	cardiac c
	59
	ð
	Results

1

 $\frac{P_{av-e}}{P_{av-m}} \times 100$ * Abbreviations are as follows: P_{s} , maximum systolic pressure; P_{D} , end-diastolic pressure; PP (= $P_{s} - P_{D}$), pulse pressure; $P_{s'-m}$, average aortic pressure, <u>8655</u> 112 98 8 <u>8</u> 112 112 1108 117 103 00108118 111 108 03 88 X 100 30 **31** 33 31 6 19 1723323 38 20 17 30 24 21 42224 13 <u>r</u> la 1,6801,1601,860 1,490 1,210 400 1,240 1,030 760 2,300 870 960 1,370 1,4101,3508601,2702,070 3,870 980 1,050 760 1,880 lyne/cm 970 Ϋ́ 1,310 1,680 1,150 1,470 920 1,240 2,410 2,560 1,450 1,6202,110,150 960 410 2,460 930 720 790 1,440 650 3,220 230 R 0.62 0.65 0.67 0.70 0.56 0.78 0.68 0.76 0.73 0.84 0.65 0.60 0.57 0.96 0.95 0.81 0.83 0.83 0.69 0.80 0.74 0.60 đ ~ 4 9 4 Ε 4 Ó Ś 4 5040 20 5004 50 6 4 in co 5 2.51 L→R 0.46) 7.28 3.26 8.10 4.11 1.86 7.62 4.75 7.31 (L→R 2.29) (L→R 1.55) (L→R 4.15) 6.19 7.79 2.80 $\begin{array}{r}
 11.2 \\
 3.55 \\
 5.59 \\
 4.83 \\
\end{array}$ 6.40 9.90 2.93 4.24 3.94 2.95 7.07 3.57 8 Pav-m *mm. Hg* 75 117 100 94 80 **6**200 92 130 80 96 76 85 74 74 45 80 110 08888 mm.Hg 52 57 60 47 50 50 50 50 56 116 51 27 45 54 34 33 36 28 28 33 33 69 ЪР mm. Hg 112 149 116 116 105 134 98 88 6 88 <u>8538</u> 02 230 111 26 158 121 $\mathbf{P}_{\mathbf{B}}$ Valvular pulmonic stenosis Coarctation of aorta Infundibular pulmonic stenosis Acute idiopathic pericarditis Normal catheterization Anomalous pulmonary vein Valvular pulmonic stenosis Pulmonary hypertension of undetermined etiology Patent ductus arteriosus Coarctation of aorta-aortic P Interatrial septal defect mitral stenosis Rheumatic heart disease, Patent ductus arteriosus Patent ductus arteriosus Patent ductus arteriosus Rheumatic heart disease Coarctation of aorta Diagnosis Pulmonic stenosis mitral stenosis mitral stenosis mitral stenosis mitral stenosis insufficiency Normal Normal Normal Normal Sex Σ Z ⊻দদদ ZZZL Σ ΣĿ ZĿ нг⊼г Σ щ ш Ē LT LT Age 412215 15 15 18 18 18 2220 22233 26 17 11 22 23 Initials M. M. M.W. J. W. B.P.C. CHEC SHEC H. M. R. M. С. М. S. H. W. J. R. P. J. W. იი Ċ щ щ. Case 201 ŝ ø 5 **∞**0 112 113 11 50 10 12 22223 25 11 ő

measured value; CO, number of liters of blood passing aortic valve per minute; m, integer nearest to the actual value of the ratio, <u>duration of systole in seconds</u>; a, duration of cardiac cycle in seconds; R, effective peripheral resistance; K, elasticity of the aorta; P₁, decrease in pressure in the i seconds after theonset of diastole; i, seconds between the onset of systole and the occurrence of P₈; P_{av-n}, average aortic pressure, calculated value. † K and R were determined with the use of P_{av-m}.

AIR CHAMBER MODEL OF THE CARDIOVASCULAR SYSTEM

779

$\frac{P_1}{PP} \times 100 \frac{P_{av-m}}{P_{av-m}} \times 100$		20 107 31 115		24 112	24 112 47 103	24 112 47 103 13 103 26 96	24 112 47 103 13 103 26 96 32 121 30 90	24 112 47 103 13 103 26 96 32 121 30 90 43 95	24 112 47 103 13 103 26 96 32 121 33 95 43 95 21 120	24 112 47 103 13 103 26 96 32 121 33 95 43 95 21 120 18 107	24 112 47 103 13 103 26 96 33 96 43 96 21 120 120 18 107 18 107 18 107	24 112 47 103 13 103 26 96 33 95 43 95 21 120 18 100 18 107 28 118 26 97 26 104	24 112 47 103 13 103 26 96 33 96 33 96 43 95 21 120 21 120 40 100 18 107 26 97 28 118 26 97 28 107 37 105	24 112 47 103 13 103 26 96 30 90 31 121 32 121 33 95 21 120 40 100 18 107 26 97 28 107 28 107 37 106 35 104 35 104	24 112 47 103 13 26 96 30 90 43 95 31 120 40 100 18 107 18 107 37 107 35 115 33 106	24 112 47 103 13 103 26 96 33 95 33 121 33 120 40 100 18 107 28 107 28 107 37 105 37 105 37 105 37 105 37 106	24 112 47 103 13 103 26 96 30 90 31 95 21 121 43 95 21 120 40 100 18 107 26 97 28 107 37 106 35 115 28 104 23 100 28 113 28 123 28 123 28 123 28 123	24 112 47 103 13 103 26 96 33 95 33 95 33 95 33 95 33 95 33 95 33 95 33 95 21 120 40 100 28 104 35 105 23 100 23 113 33 111	24 112 47 103 13 103 26 96 30 90 31 121 32 121 33 95 21 120 40 100 18 107 26 97 28 104 37 105 33 106 33 106 33 103 28 113 28 123 33 100 28 123 33 100 28 123 33 100 28 123 33 100	24 112 47 103 13 103 26 96 30 90 31 121 32 121 33 95 43 95 21 120 40 100 18 100 28 104 28 104 37 105 33 100 15 113 28 113 29 100 20 101 21 105 23 100 24 100 28 123 33 111 20 101 20 101 20 111 20 106 21 106 21 106 21 106 20 111
dyne/cm. ⁵ 890 1,710 1,310 1,450	890 1,710 1,310 1,450	1,310 1,450	1,450		1,460 2,380	720 790	3,180	1,050	2,260 2,780	2,020 1.650	1,690	620	540	1,720	1,250	560	1,410	069	1,110	1,480 910
dame and	to be be	1,110 2,140	820	1,560	1,460 1,440	620 1,710	2,880	1,440	$1,240 \\ 3,970$	2,290 1.630	1,980	830	810	2,020	1,780	740	1,210	069	2,060	$1,080 \\ 1,590$
	sec.	0.79 0.69	0.64	0.56	0.67 0.78	0.74 0.68	0.69	0.54	0.46 0.55	0.69 0.73	0.68	0.65	0.77	0.73	0.76	0.97	0.72	0.74	1.30	0.72 1.43
		ъъ	ŝ	4	4	40	4	ъ	49	4 v.	4	4	3	ъ	ŝ	S	4	ŝ	9	ъ œ
>		5.73 2.75	11.40	4.20	4.85 4.98	9.30 4.30	2.30	4.00	6.45 1.91	3.14 4.91	5.20	7.71	10.80	4.15	3.94	10.9	5.41	11.38	4.15	5.90 3.76
	mm. Hg	80 74	117	82	88 90	72 92	83	72	100 95	8 <u>0</u>	129	80	110	105	88	85	82	98	108	80 75
11	mm. Hg	45 36	108	30	54 88	57 20	42	28	60 33	43 68	62	30	48	53	46	60	57	60	70	50 88
3	mm. Hg	100 96	192	100	124 140	110 105	105	93	130 118	109 148	168	100	143	130	121	128	119	138	157	120 107
		? Interatrial septal defect Rheumatic heart disease,	mitral insufficiency Coarctation of aorta,	aortic insufficiency Rheumatic heart disease,	mitral stenosis Normal Rheumatic heart disease, aortic stenosis and insuffi-	ciency, mitral stenosis Pulmonary arteriovenous fistula Rheumatic heart disease, mitral	stenosis, post commisurotomy Rheumatic heart disease, mitral	stenosis, pre-commisurotomy Rheumatic heart disease,	mitral stenosis Patent ductus arteriosus Arteriosclerotic heart disease,	with left heart failure Anomalous pulmonary vein Coarctation of sorts	Hypertensive cardiovascular	disease, with left neart failure Rheumatic heart disease,	mitral scenosis Pulmonary hypertension of	undetermined etiology Arteriosclerotic heart disease, with right and left ventricular	Arteriosclerotic heart disease, with right and left ventricular	Traumate Traumatic arteriovenous fistula,	right thigh Arteriosclerotic heart disease,	with left ventricular failure Pulmonary hypertension of	undetermined euology Arteriovenous fistula, right thigh (80 sec. after fistula closed by	pressure) Normal Rheumatic heart disease, mitral
XGX		ЪЯ	Μ	۲	$\mathbf{R}^{\mathbf{F}}$	цг	ц	M	чZ	ч∑	Z	M	ц	M	Ν	M	ц	М	M	чN
Age		26 26	26	27	27 29	30 30	30	35	36 38	39	6	41	41	41	42	43	43	43	43	46 47
Initials		W. W. R. M.	Н. Т.	С. В.	H. J. B. M.	R. P. A. M.	A. M.	J. C.	N. S. L. T.	L. ۲. ۲. ۲.	J. B.	J. R.	G. C.	G. T.	Е. О.	Т. Т.	G. D.	W. Н.	Т. Т.	М. J. Н. С.
Case	#0.	26	28	29	30 31	32 33	34	35	36 37	38	40 4	41	42	43	44	45	46	47	48	49 50

TABLE I—Continued

780

SIDNEY ROSTON AND LEONARD LEIGHT

Case	Initials	Age	Sex	Diagnosis	Pa	dd	Pav-m	СО	E	đ	R†	Кţ	Pi PP × 100	$\frac{P_{av-a}}{P_{av-m}} \times 100$
#0.					mm. Hg	mm. Hg	mm. Hg			sec.	dyne-sec./	dyne/cm. ⁵		
51	н. с.	47	M	Rheumatic heart disease, mitral	115	48	82	5.31	S	0.88	1,230	066	27	105
52	F.S.	49	X	stenosis, post-commisurotomy Rheumatic heart disease,	66	32	80	5.20	4	0.80	1,230	770	31	105
53	M. M.	49	ц	mitral stenosis Rheumatic heart disease,	137	53	110	4.30	4	0.51	2,040	2,450	26	66
54	ე	50	ы	mitral insufficiency Pulmonary hypertension of	185	100	125	3.99	4	0.87	2,500	2,910	34	105
55	G. W.	52	M	undetermined etiology Rheumatic heart disease,	108	40	82	3.65	S	0.94	1,800	920	13	114
56	н. W.	54	M	mitral stenosis Arteriosclerotic heart disease, aortic insufficiency, cor	160	102	60	3.66	ŝ	0.72	1,960	3,410	27	115
57	0. B.	54	M	pulmonale Rheumatic heart disease,	134	68	92	3.95	4	0.86	1,860	2,010	31	104
58	E.C.	58	ы	mitral stenosis Interatrial septal defect	154	64	108	4.50 11 D 6 40	S	0.60	1,920	2,070	23	113
59	Н. К.	58	M	Rheumatic heart disease, mitral stenosis	126	46	8	2.12	4	0.79	3,390	2,440	33	119

TABLE I—Continued

value of P_i might be considerably greater than for the resting catheterization subjects.

With this demonstration of the validity of the mathematical model, it appeared reasonable to pursue the practical implications further. Attempts to determine the cardiac output from the arterial pressure tracing alone were unsuccessful. The cardiac output could not be determined from the pressure tracing until the value of K or R was known. However, while the ratio K/R could be derived from the pressure tracing, the determination of individual values of K and R required use of the measured cardiac output. Thus, an insoluble situation existed.

The value of the resistance, R, could be directly derived from measurements of Pay and CO. The distribution of R in the present study was broad, with the standard deviation nearly equal to onehalf the mean value. Only minimal correlation of R with the diagnosis existed. Thus, for example, the average value of R for the eight patients with patent ductus arteriosus, peripheral arteriovenous fistula or aortic insufficiency, which might be expected to be low, actually was $1,350 \pm 560$, quite close to the overall mean value. On the other hand, the highest values of R occurred in patients with no obvious aortic or peripheral pathology. Age, sex and body size had no consistent effect upon R. Its value was less a function of gross anatomical abnormalities than of the state of constriction of the arterioles throughout the body. Furthermore, the wide variation of R in different individuals in essentially identical physical surroundings indicated that R was of more value as an index of emotional than of physical adjustment to an environment. R would probably be more useful in evaluation of the circulatory changes within an individual in different circumstances than in comparison of one individual with another.

In contrast to the resistance, which could be calculated from readily measurable quantities, the direct determination of K would be impossible in the living body. This direct determination required measurement of changes of aortic pressure as a function of nonperiodic changes in volume. Hence, during life, K would have to be determined by indirect methods. The distribution of K in the present study was broad, with a standard deviation greater than one-half the mean value. K

TABLE II	
Variation of the aortic elasticity with age	

No. in group	Average K	Standard deviation	Standard deviation of mean
13	1,410	820	228
18	1,390	420	99
7	1,830	920	346
15	1,170	540	140
6	2,290	780	318
	No. in group 13 18 7 15 6	No. in group Average K 13 1,410 18 1,390 7 1,830 15 1,170 6 2,290	No. in group Average K Standard deviation 13 1,410 820 18 1,390 420 7 1,830 920 15 1,170 540 6 2,290 780

showed no consistent change with age up to 58 years (Table II). The results in Table II were in remarkably close agreement with values found in direct measurement of the pressure-volume relationship in the aortas of post-traumatic human cadavers (8). The 47 postmortem aortas yielded an average change of 16 ± 6.5 ml. in a rtic volume per M.² of body surface as an accompaniment of an increase in pressure from 80 to 110 mm. Hg. Since 1.78 was the mean value of the body surface area of the cadavers, K was equal, on the average, to 1,400 dyne per cm.⁵—a mean value only 5 per cent less than, and statistically identical to, the average value of 1,470 (standard deviation of mean = 100) found in the present study, but distinctly different (p < 0.01) from the mean value of $1,023 \pm 482$ (standard deviation of mean = 58) found by Shock (9). The similarity of the values of K found in the work of Remington, Noback, Hamilton and Gold (8) and in the present study strongly suggested that the volume of the chamber in the mathematical model was essentially equivalent to the volume of the aorta. The deviation of the pressure in the distal aorta from the idealized pressure in the model as a result of the standing wave effect (10) apparently did not decrease the validity of the theoretical representation of the aorta by the chamber. In addition, Remington and his group showed that, up to approximately 115 mm. Hg, the value of K for aortas of individuals younger than 58 years showed no consistent pattern. However, above 58 years, the value of K The similarity between the results increased. found in cadavers and the results of the present study probably arose from the fact that the elasticity of the aorta, residing mainly in the inert elastic fibers, did not depend upon the viability of the body. The significance of K lay in its possible

correlation with such factors as the degree of arteriosclerosis of the aorta.

The air chamber model gave evidence in the present study of present and potential usefulness. Its use led to an indirect method for the determination of K. With a known value of D, K and R could be determined by means of the arterial pressure tracing without measurement of Pav. If a measured value of D were unavailable, D could be roughly approximated from the arterial pressure tracing by assumption of a value for K. Furthermore, additional work would indicate whether or not the value of K remained reasonably constant in the same individual under various physiological circumstances. If it did remain reasonably constant, relative changes in R and D, though not the absolute values of these parameters, could be determined in a given individual from the arterial pressure tracing alone. Finally, the arterial pressure tracing might, under certain circumstances, be replaced by measurement of the blood pressure at the arm with a cuff. The auscultatory blood pressure would approximate the actual values of P₈ and P_D in the brachial artery. From the pulse rate, the value of a could be determined, and tables of the average duration of diastole as a function of cardiac rate could be applied. An approximation to the value of K/R $\ln (P_{\rm s}/P_{\rm D})$ could be calculated from $\frac{\ln (18/10)}{\text{duration of diastole}}$. From this linear relationship, too, Pi could be easily approximated. Thus, approximate determination of relative changes in R and D in a given individual might, under certain conditions, be feasible merely from measurement of the blood pressure at the arm with a cuff.

SUMMARY

The recent development of a more exact mathematical approach to the air chamber model of the cardiovascular system suggested evaluation of the practical validity of the mathematical representation and, more importantly, of the usefulness of the model itself. The source of experimental data was 59 cardiac catheterizations of adults with cardiovascular abnormalities. The mathematical approach proved valid insofar as it could be tested, the 7 per cent difference between the average arterial pressure directly measured and that derived by means of the theory from the arterial pressure tracing being within the range of reasonable experimental error. The usefulness of the air chamber was indicated by the similarity of the aortic elasticities determined from the model to values previously found in direct measurements upon the aortas of cadavers. This similarity opened new possibilities for future application of the model.

REFERENCES

- 1. Frank, O. Die Grundform des arteriellen Pulses. Z. Biol. 1899, 37, 483.
- Aperia, A. Hemodynamical studies. Skand. Arch. Physiol. 1940, 83, Suppl. 16.
- Brotmacher, L. Evaluation of derivation of cardiac output from blood pressure measurements. Circulat. Res. 1957, 5, 589.
- Bridwell, T., Jenss, R. M., and Greene, D. G. An evaluation of Starr's equation for the prediction of stroke volume. Circulation 1956, 14, 250.

- 5. Roston, S. Mathematical formulation of cardiovascular dynamics by use of the Laplace transform. Bull. math. Biophys. 1959, 21, 1.
- Leight, L., Snider, T. H., Clifford, G. O., and Hellems, H. K. Hemodynamic studies in sickle cell anemia. Circulation 1954, 10, 653.
- Salans, A. H., Katz, L. N., Graham, G. R., Gordon, A., Elisberg, E. I., and Gerber, A. A study of the central and peripheral arterial pressure pulse in man; correlation with simultaneously recorded electrokymograms. Circulation 1951, 4, 510.
- Remington, J. W., Noback, C. R., Hamilton, W. F., and Gold, J. J. Volume elasticity characteristics of the human aorta and prediction of the stroke volume from the pressure pulse. Amer. J. Physiol. 1948, 153, 298.
- 9. Landowne, M., Brandfonbrener, M., and Shock, N. W. The relation of age to certain measures of performance of the heart and the circulation. Circulation 1955, 12, 567.
- Hamilton, W. F., and Dow, P. Experimental study of the standing waves in the pulse propagated through the aorta. Amer. J. Physiol. 1939, 125, 48.