THE EFFECT OF ABRUPT CHANGES IN PLASMA CALCIUM CONCENTRATIONS ON RENAL FUNCTION AND ELECTROLYTE EXCRETION IN MAN AND MONKEY 1, 2

By MARVIN F. LEVITT, MARK H. HALPERN, DEMETRA P. POLIMEROS, AVRON Y. SWEET, AND DONALD GRIBETZ

(From the Departments of Medicine and Pediatrics, The Mount Sinai Hospital, New York, N. Y.)

(Submitted for publication June 25, 1957; accepted September 26, 1957)

It is well known that patients with hypercalcemia of diverse etiologies may exhibit marked polyuria (1-5). The increased rate of urine formation is often associated with considerable losses of urinary solute and sometimes results in severe depletion of extracellular salt and water stores (6). This urinary wastage has been attributed to slowly developing pathological changes in the renal tubules produced by prolonged hypercalciuria and nephrocalcinosis. It is possible, however, that the renal response may in part be conditioned by a direct and immediate physiological effect of the hypercalcemia and/or hypercalciuria. The studies of Wolf and Ball in which calcium infusions in the dog provoked a prompt increase in the rate of sodium excretion (7) suggest that such is the case. To test this hypothesis further, experiments were devised in man and monkey to evaluate the immediate effects of changing filtered calcium loads upon discrete renal functions and upon the rate of excretion of electrolytes.

MATERIALS AND METHODS

An increase in the filtered load of calcium was achieved by a sustained calcium infusion or by the single intravenous injection of calcium in the form of gluconate or lactate. In monkey and man the infusions were administered in the form of calcium gluconate or lactate at the rate of 0.07 mg. of calcium per minute per Kg. for a period of 60 to 90 minutes. The calcium salts were dissolved in hypotonic saline solutions (0.45 per cent). The infusion was administered at a constant rate of 1 ml. per minute in man and 0.1 ml. per minute in monkey

and contained proper quantities of inulin and PAH for the measurement of renal clearances. Comparable solutions free of calcium were administered at the same rate before and after the calcium infusion. Three to four 20 minute control periods were obtained prior to the calcium infusion, during which inulin and PAH clearances and the control rates of sodium, chloride, potassium, calcium, phosphorus and ammonium (pH and bicarbonate in some experiments) excretion were determined. Similar measurements were made in four 20 minute periods during the calcium infusion, and for two to three comparable periods after the calcium infusion was discontinued. Standard catheter and air flush techniques were used for bladder emptying and clearance determinations. During the control period at least two and generally three heparinized blood samples were obtained for the determination of plasma calcium, phosphorus, sodium, potassium, chloride, bicarbonate, inulin and PAH concentrations. Similar measurements were repeated at 15 minute intervals during the calcium infusion and after its discontinuation. The calcium infusion studies were performed in five resting normal adults in a fasting state and in three normal fasting cynomolgus monkeys. Similar measurements were made in man before and after a single intravenous injection of 10 ml., 20 ml., and 40 ml. of 10 per cent calcium gluconate solution, respectively. These single injection experiments were performed in seven normal fasting male subjects.

After the typical response to a standard rapid injection of 20 ml. of calcium gluconate was evaluated, similar loads were administered to eight patients in whom the urine had been either alkalinized or acidified with appropriate prior therapy. In the latter subjects sodium bicarbonate or ammonium chloride solutions of 150 mEq. per liter were administered at the rate of 2 ml. per minute for 90 minutes before and for a similar period after the injection of the calcium load. In these subjects, measurements similar to those mentioned above were made during the acidifying or alkalinizing infusion both before and after the administration of the calcium load.

The plasma calcium concentration was reduced in three normal patients by the infusion of a chelating solution. Sodium Versenate® (sodium salt of ethylenediaminetetraacetic acid, Riker Laboratories, Inc.) was infused at the rate of 15 mg. per minute for 40 minutes. Measurements identical to those listed above were repeated before, during and for 90 minutes after the chelate

¹ Supported by grants from the United States Air Force [Contract No. AF 41(657)], the National Institute of Arthritis and Metabolic Diseases, National Institutes of Health (Grant No. A-277), and the National Foundation for Infantile Paralysis.

² Presented in abstract form at the Forty-Eighth Annual Meeting of The American Society for Clinical Investigation, May, 1956.

infusion. In addition, free and total (digested) calcium concentration in the urine was measured during and after the Versenate® infusion.

The chemical methods are, for the most part, identical to those previously used and reported from this laboratory (8, 9). In addition, phosphorus was analyzed by the method of Fiske and Subbarow (10) and calcium by the technique of Kramer and Tisdall (11).

RESULTS

Calcium infusions in man (Table I)

The plasma calcium concentration rose promptly during the calcium infusion, remained elevated throughout the infusion and tended to fall toward normal in the postinfusion period (Figure 1, Table I). The plasma phosphorus rose consistently but much more slowly, reaching its highest levels after the discontinuation of the infusion in four of the five subjects (Table I). The peak increases in plasma calcium and phosphorus concentration averaged 6.0 mg. per cent (2.7 to 12.0) and 1.5 mg. per cent (0.9 to 1.9), respectively. No changes were noted in plasma sodium, potassium, chloride, bicarbonate concentrations or in the plasma pH.

The rate of calcium excretion began to increase promptly after the onset of the calcium infusion and reached a maximum toward the end of the infusion period (Figure 1, Table I), with the increment averaging $56 \,\mu\text{Eq}$. per minute (44 to 62). Phosphorus excretion also rose after the onset of the calcium infusion. This peak increase averaged 21 μ M per minute and tended to occur somewhat later than the maximal increase in the rate of calcium excretion.

The calcium infusions induced a prompt increase in the rate of salt excretion (Figure 1, Table I). This increase was noted in the first infusion period, reached a peak toward the end of the calcium infusion, and persisted to a lesser extent during the postinfusion period. The maximum increase in the rate of sodium excretion averaged 700 μ Eq. per minute (375 to 1,086 μ Eq. per minute) or more than four times the control values. The simultaneous peak increase in the rate of chloride excretion averaged 520 μ Eq. per minute (190 to 870 μ Eq. per minute) or greater than two times the control values. Coincident with the peak increase in salt excretion, there occurred a moderate increase in the rate of urine

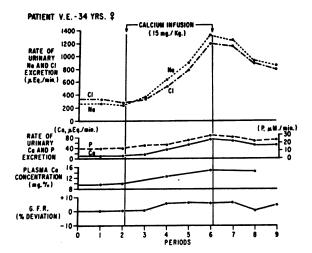


FIG. 1. THE EFFECT OF A CALCIUM INFUSION ON RENAL FUNCTION, ELECTROLYTE EXCRETION, CALCIUM AND PHOSPHORUS PLASMA CONCENTRATIONS IN MAN

flow averaging 3 ml. per minute. The increases in the rate of calcium, salt and water excretion tended to coincide. The rate of potassium excretion did not change consistently during the calcium infusion (Table I), tending to increase in two experiments, fall in two and remain unchanged in one. No consistent changes in the rate of urinary excretion of ammonia, bicarbonate, or in urinary pH were noted during or after the calcium infusions in those experiments in which these indices were measured.

Inulin clearance measurements showed no detectable changes in three of the human subjects and a small increase in the two remaining subjects (Table I—S. E. and V. E.). PAH clearances showed an increase in four of the five subjects (Table I).

Calcium infusions in monkey (Table II)

The data obtained from calcium infusions in three monkeys were similar to those obtained in man (Figure 2, Table II). The changes in plasma calcium and phosphorus concentrations corresponded to those seen in man with the rise in phosphorus tending to occur more slowly and reaching its peak later. The maximum increases in calcium and phosphorus concentrations averaged 2.6 and 0.9 mg. per cent, respectively. The peak increase in the rate of calcium excretion averaged 14 µEq. per minute and tended to coincide

TABLE I

The effects of calcium infusion on renal function and electrolyte excretion in man

		Clean	rances		Urine e	lectrolyte e	xcretion				sma tration
Subject	Periods	Inulin ml./min.	PAH ml./min.	Sodium µEq./min.	Chloride µEq./min.	Potas- sium µEq./min.	Cal- cium µEq./min.	Phosphorus phorus pM/min.	Urine volume ml./min.	Cal- cium mg. %	Phosphorus mg. %
R.R.	Control*	103	553	293	300	76	3.3	12.1	3.2	9.4	3.3
	Calcium gluconate infusion	114 109 100	688 654 650	434 609 666	387 449 490	82 34 34	8.2 36.7 47.1	20.1 21.3 23.0	6.9 3.9 1.2	12.6	4.1
	After calcium infusion	103	592	582	471	28	44.8	28.9	1.3	13.4	4.8
S. E.	Control*	74	412	217	149	53	4.3	2.3	1.4	9.3	2.1
	Calcium gluconate infusion	81 93	470 546	357 1,211	316 848	73 92	14.8 62.3	5.6 13.4	4.5 5.0	21.4 16.4	2.3
	After calcium infusion	82 71	437 428	803 617	534 425	102 74	47.6 31.6	10.1 7.0	3.3 2.9	15.0	3.7
V. E.†	Control*	95	321	284	332	78	6.2	11.7	1.8	9.3	3.7
	Calcium gluconate infusion	96 108 108 108	364 413 410 487	387 675 934 1,370	370 582 822 1,240	62 47 49 64	12.6 31.9 48.4 70.2	15.5 17.6 21.8 27.0	1.8 3.2 4.6 8.5	12.2	4.3
	After calcium infusion	109 97 106	448 405 433	1,291 950 875	1,198 923 814	67 50 68	67.5 47.5 45.5	25.6 20.6 21.3	7.1 4.5 4.6	14.0	5.2
R. M.	Control*	126	590	130	228	140	10.4	4.9	5.7	9.2	2.6
	Calcium gluconate infusion	128 122 123	624 608 640	263 536 731	415 473 612	130 116 121	22.8 40.4 71.7	4.5 8.4 13.7	5.4 4.0 5.0	10.0 12.4 15.0	2.6
	After calcium infusion	127	610	578	477	103	67.5	14.5	2.8		3.5
N. L.	Control*	121	632	239	229	98	18.1	0.9	2.7	9.9	2.1
	Calcium gluconate infusion	127 125 124	676 608 555	414 705 761	388 641 691	127 97 77	36.8 65.2 74.7	1.6 5.2 9.0	9.4 6.9 5.3	11.2	2.2
	After calcium infusion	123 120	531 670	658 448	590 418	 62 50	69.8 57.8	11.8 11.5	4.1 2.3	11.2	2.9

^{*} Controls represent the average of three 20 minute periods. Subsequent periods varied between 20 and 25 minutes in length.

† In this patient 0.15 mg. of calcium per Kg. per minute was administered.

with the increases in the rate of sodium and chloride excretion. The maximal increments in the rate of sodium and chloride excretion averaged 22 and 14 μ Eq. per minute or about six times the

control values, respectively. In contrast to man,

a consistent increase in the rate of potassium excretion averaging 7 μEq . per minute occurred simultaneously with the maximum rate of salt excretion. No changes in inulin clearance were noted during or after the calcium infusion.

TABLE II

The effects of calcium infusion on renal function and electrolyte excretion in the monkey

		Clear	rances		Elec	ctrolyte excr	etion			sma tration
Monkey	Periods	Inulin ml./min.	PAH ml./min.	Sodium µEq./min.	Chloride µEq./min.	Potas- sium µEq./min.	Cal- cium µEq./min.	Ammo- nia mg./min.	Calcium mg. %	Phosphorus
I	Control*	10.6		0.4	2.4	6.3	6.6		12.6	2.4
	Calcium	10.0 11.4 9.1		0.6 2.0 3.4	3.4 6.5 10.1	5.0 11.7 11.8	7.4 13.7 15.9		14.0	2.7
	infusion	9.4 8.6		1.2 2.3	5.6 8.7	6.5 9.4	16.6 17.0		15.6	2.7
	After calcium infusion	9.7 11.4 7.5		1.2 0.9 0.9	4.5 2.7 2.4	5.1 2.2 1.5	10.2 13.7 5.6		11.8	3.5
II	Control*	14.8		6.1	12.3	6.3	10.2	7.0	11.4	2.5
	Calcium gluconate infusion	12.7 13.7 13.0		7.3 23.0 21.0	13.7 37.9 36.4	6.5 12.2 9.4	12.1 21.0 20.3	6.5 9.9 8.4	14.2	2.6
	musion	12.5		22.6	35.5	8.0	15.5	6.5	15.0	3.3
	After calcium infusion	11.4 11.2 10.6		10.3 8.0 7.2	22.1 14.3 14.5	6.5 5.2 4.8	17.1 12.8 10.1	5.9 5.0 4.8	11.1	3.2
III	Control*	14.5	79.7	1.9	3.4	5.7	5.1	6.1	11.6	4.2
	Calcium gluconate	15.1 15.7	86.7 90.7	6.0 14.1	15.4 37.8	6.7 10.2	14.7 26.2	9.4 14.3	12.4	4.6
	infusion	13.9 15.0	81.3 87.8	13.1 22.7	34.0 37.0	9.0 13.4	24.7 29.6	9.8 11.2	12.6	5.8
	After calcium infusion	14.3 14.1 12.6	90.3 89.1 83.0	5.1 0.9 1.1	28.8 7.4 3.3	4.1 1.6 3.3	20.6 15.7 7.8	4.2 8.5 7.9	9.4	5.4

^{*} Controls represent the average of three 20 minute periods. Each subsequent period varied between 20 and 25 minutes in length.

Single intravenous administration of calcium in man (Tables III and IV)

The rapid intravenous administration of 10, 20, and 40 ml. of 10 per cent calcium gluconate solution in man likewise produced an increase in the rate of calcium and salt excretion with the precise response proportionate to the quantity injected (Table III). Following the 20 ml. load, the rate of calcium and phosphorus excretion increased an average of 17 μ Eq. and 13 μ M per minute, respectively. Coincidentally, the increment in the rate of sodium and chloride excretion averaged 183 and 148 μ Eq. per minute, or 200 and 110 per cent greater than the control rates, respectively. A small transient increase in potassium excretion was noted but no changes in urinary pH or bicarbonate concentration were noted. The changes

following the injection of a 40 ml. calcium load were qualitatively similar but greater, whereas those following the injection of 10 ml. of calcium gluconate solution were considerably smaller (Table III). No changes in glomerular filtration rate or renal plasma flow were detected in those subjects in which it was measured following the single intravenous calcium injections (Table III—M. V., S. S., and J. M.)

In the experiments in which 20 ml. of calcium gluconate was administered intravenously to subjects being infused with bicarbonate or ammonium chloride, no definite difference in the response to the calcium load was noted from that observed in the unprepared patients (Table IV). The increase in the rate of calcium, sodium, and chloride excretion approximated that observed in patients

TABLE 111 The effects of a single calcium gluconate injection on renal function and electrolyte excretion in man

		Clearances	ınces			Urine (Urine electrolyte excretion	xcretion			Urine	e le	Pla	Plasma concentration
Subject	Periods	Inulin	РАН	Sodium	Chloride	Potas- sium	Cal-	Phos- phorus	CO3	Ammo- nia	Volume	Hq	Cal- cium	Phos-
M. V.	Control*	ml./min. 84	ml./min. 449	uEq./min. 242	μΕq./min. 248	μΕq./min. 70	μΕq./min. 4.7	μM/min. 10.9	% .joa	mg./min. 60.0	ml./min. 1.4	1	mg. % 9.1	mg. %
			 	 		l. of calcium	ium gluconate	tate injected	4	 	 			
		93	587	351	350	08:	4.7	15.4		58.7	4.4		9.0	3.3
	After calcium	88	427 466	326 365	323 335	47 48	12.3 14.0	13.0 12.3		56.0 56.0	5.7 7.7		11.2	
	gluconate injection	87 83	468 418 435	365 316 318	330 312 308	43 46 46	14.3 13.4 12.2	12.3 10.6 11.1		58.5 55.6 60.0	4. &. &. 8. &. %.		9.6	3.8
L. G.	Control*			120	135	29	2.5	13.5	6.0		8.2	5.93		
l l i		 	 		. — 20 m	ml. of calcium	ium gluconate	rate injected	 		 	 	 	
	A 640.0			328		•	12.1	39.9	6.3		17.3	6.09	12.6	3.5
	calcium			32 4 201	285 188	45 34	17.4 14.5	37.2 32.9	5.5		12.4	6.04 6.04	11.8	3.8
	gluconate injection			167 136	165 142	31 28	14.4 13.5	28.3 23.0	5.3 5.3		12.5 13.8	5.95 5.95	10.8	3.8
C. J.	Control*			107	165	133	5.2	21.9	15.6		9.6	0.60	10.8	3.9
		 		 	20 m	ml. of calcium		gluconate injected	 					
				330	361	218	30.2	32.9	17.1		16.3	6.65		
	After calcium			200 200	215	119	22.1	22.6	16.2		14.8	6.60	11.4	3.7
	gluconate injection			117 147 118	117 134 124	93 77	15.4 20.1 15.1	17.0 19.3 15.6	12.5 12.5 12.5		17.5 17.5 13.8	6.57 6.59	12.2	3.6
C. J.	Control*			91	140	83	10.0	3.9	12.9		6.5	6.68	10.2	2.6
	 	 	 		20 m	ml. of calcium	ium gluconate	rate injected	d.					
	•			299	347	157	14.1	7.7	15.3		20.0	6.74		
	After			§ 5	334 219	130	34.0 25.6	8.0 8.0 8.0	14.4		18.3	6.63		
	calcium			169	214	122	26.1	8.5	11.5		19.3	6.62	;	ć
	injection			82	114	121	16.1 20.6	4.6 0.8	12.1		211.9	0.04 60.04	711.	6.2
				106	119	86	21.5	6.5	11.3		14.8	6.54	10.8	3.1
			7 7 7 7 7) operation	Subsequent		nagartad boings aboing		20 and 25 minut	minutes in lenoth			

* Controls represent the average of three 20 minute periods. Subsequent periods varied between 20 and 25 minutes in length.

ABLE III—Continued

na ration	Phos- phorus	mg. %] 		2.3		2.7	3.6	 	3.8	4.1	4.2	3.2	 	3.5	;	4.2
Plasma concentration	Cal-	mg. % 11.0	 		11.2		13.0	9.6	 	11.0	10.8	10.2	9.6	 	12.0		10.4
	Hq	6.57	 	6.60 6.55	48 32	34.	39 46							 			
Urine			 						} 					 			
	Volume	ml./min 9.6	 	17.0 17.7	18.2	14.8	14.0 14.7	5.0	 	9.7	6.3	7.0	3.7	<u> </u> 	10.5	9.0	10.6
	Ammo- nia	mg./min.						69.4		85.0	61.9	68.1	81.0	! - 	93.9		95.8
	• 00	vol. % 26.5	 קי	28.5 26.8	25.6	23.3	23.3							eq			
rcretion	Phos- phorus	µM/min. 0.9	ate injecte	0.9	1.1	::	1.2	14.7	rate inject	27.1	24.5	24.1	11.3	rate inject	16.3 24.2		27.0
Urine electrolyte excretion	Cal- cium	μΕq./min. 7.5	of calcium gluconate injected	10.2 15.2	13.6	8.9	9.1 11.0	11.0	of calcium gluconate injected	28.3	30.4	28.2	11.5	of calcium gluconate injected	35.8 54.1	43.4	39.1
Urine e	Potas- sium		d. of calci	63 53	52 65	57	929	128	ml. of calci	135	4,4	65	29	ml. of calc	83	11	48
•	Chloride	μΕq./min. μΕq./min. 146 55	20 ml.	174 183	181	99	190	269	40 "	422	368	374	240	40 "	564 737	265	384
	Sodium	μΕq./min. 132	 	220 225	207 185	153	161	267	! 	517	467	422	243		577 764	638	397
nces	РАН	ml./min.	 					542	 	532	427	462	889		79 4 686		674
Clearances	Inulin	ml./msn.	 					129	 	130	118	126	125		131 128	132	127
	Periods	Control*		Aftor	calcium	gluconate		Control*	 	After	gluconate	injection	Control*		After calcium	gluconate	injection
	Subject	S. A.	 					S. S.					J. M.				

whose urine had not been previously acidified or alkalinized. At the time that the calcium load was administered, the urine pH's averaged 6.01, 6.52, and 7.33 in the acidified group, the untreated, and the alkalinized group, respectively. No change in the plasma pH was detected during the acid or the alkaline infusions.

Versenate® infusion in man (Table V)

In the chelate experiments, as the plasma calcium concentration fell, the rate of sodium and chloride excretion likewise decreased (Figure 3, Table V). Plasma calcium concentration began to fall toward the end of the chelating infusion and continued to fall thereafter. Total calcium excretion, free plus chelated (digested), rose promptly after the onset of the infusion but the

rate of excretion of free calcium fell toward the end of the Versenate® infusion. Coincidentally, there occurred a fall in the rate of sodium and chloride excretion. These falls in electrolyte excretion averaged 177 and 144 μ Eq. per minute or 45 and 47 per cent of the control values for sodium and chloride, respectively. Total phosphorus excretion tended to rise slowly after the onset of the Versenate® infusion reaching its highest levels after the cessation of the infusion. No changes in glomerular filtration rate or renal plasma flow were noted throughout these chelate experiments.

DISCUSSION

These data indicate that an increase or decrease in the plasma calcium concentration promptly produces a similar change in the rate of salt excretion

TABLE IV

The effects on electrolyte excretion of a single calcium injection in patients receiving an acid or alkaline infusion

			Urine	electrolyte (excretion						sma itration
Subject	Periods	Sodium	Chloride	Potas- sium	Cal- cium	Phos- phorus	Urine volume	Urine pH	Plasma pH	Cal- cium	Phos- phorus
(Infused	with NH ₄ Cl)	μEq./min.	μEq./min.	μEq./min.	μEq./min.	μM/min.	ml./min.			mg. %	mg. %
P. L.	Control*	85	118	61	8.4	8.3	4.5	6.45		10.4	1.9
				20 ml. o	f calcium	gluconate i	njected				
	After calcium gluconate	216 222 110 145	208 239 123 181	60 46 24 33	34.7 21.6 12.8 19.6	16.0 19.5 10.8 14.6	12.6 12.7 7.5 11.5	6.32 6.18 6.11 6.07			
A. A.	Control*	151	156	36	13.5	10.2	0.8	6.21	7.23	10.1	1.4
				20 ml. o	f calcium	gluconate i	njected				
	After calcium	231 154	208 149	29 11	14.8 15.1	8.0 6.7	5.6 1.2	6.18 5.51	7.32	11.0	1.8
	gluconate	205 220	225 246	14 14	20.8 21.6	7.5 6.7	1.2 1.2	5.48 5.47	7.34	10.6	2.0
R. B.	Control*	27	57	20	6.2	4.7	0.5	5.50	7.36	10.0	
				20 ml. o	f calcium	gluconate i	njected				
	After	143 96	180 117	38 25	20.9 23.7	6.6 5.9	1.3 0.7	5.46 5.02	7.38	12.7	
	calcium gluconate	116 159	168 225	21 23	31.1 28.1	7.9 6.7	0.9 1.5	5.09 5.09	7.39	11.0	
D. M.	Control*	155	242	123	6.7	4.0	9.7	6.82	7.34	11.1	1.7
				20 ml. d	f calcium	gluconate i	njected				
	After calcium	287 246 213	335 304 282	126 100 88	19.8 17.6 15.1	6.6 6.6 7.9	7.6 3.9 2.9	6.70 6.60 6.44	7.36 7.36	13.8	
	gluconate	228	337	113	15.1	9.9	5.7	6.32	7.00		

^{*} Controls represent the average of three 20 minute periods. Subsequent periods varied between 20 and 25 minutes in length.

TABLE IV-Continued

			Urine	electrolyte	excretion						sma tration
Subject	Periods	Sodium	Chloride	Potas- sium	Cal- cium	Phos- phorus	Urine volume	Urine pH	Plasma pH	Cal- cium	Phos- phoru
(Insused	with NaHCO2)	μEq./min.	μEq./min.	μEq./min.	μEq./min.	μM/min.	ml./min.			mg. %	mg. %
V. V.	Control*	404	189	106	2.8	23.8	6.7	7.74		9.5	2.8
				20 ml. o	 of calcium	gluconate i	– — — — njected				
		491	245	70	4.2	25.7	11.8	7.16		10.6	2.9
	After	477	264	38	6.2	21.2	15.5	6.90			
	calcium	447	240	44	7.1	18.9	16.7	6.81		9.9	3.1
	gluconate	396	204	42	7.8	14.3	18.2	7.07			
		384	222	31	9.0	8.0	9.0	7.39			
G. I.	Control*	309	142	176	4.6	23.3	4.9	7.66		10.0	2.4
				20 ml. o	f calcium	gluconate i	njected				
		473	225	157	15.1	21.0	4.5	7.63		10.4	2.5
	After	430	188	95	19.2	23.1	10.4	7.29		2012	
	calcium	199	72	63	8.7	18.9	10.8	7.12			
	gluconate	205	60	78	8.0	10.2	13.4	7.12			
	gracomate	266	77	87	10.5	10.3	12.3	7.29			
S. L.	Control*	121	43	181	7.5	36.3	6.7	7.20		10.2	2.2
				20 ml. oj	f calcium	gluconate ir	ijected				
		319	100	272	27.0	39.3	21.8	7.17		10.3	2.2
	After	214	46	79	20.3	19.6	10.5	7.15			
	calcium	229	50	94	28.7	28.4	14.2	7.00			
	gluconate	160	24	48	20.9	23.9	10.7	7.03			
		199	28	58	23.7	22.1	11.8	7.09			
P. L.	Control*	360	116	198	5.3	8.8	6.6	7.70		9.3	2.1
				20 ml. of	f calcium į	gluconate in	jected				
		565	172	145	23.5	31.8	9.3	7.36			
	After	299	87	53	14.4	26.2	4.3	7.36			
	calcium	188	46	44	9.6	21.3	6.6	7.01			
	gluconate	148	44	69	11.2	25.9	9.7	7.03			
	0,100	236	39	64	9.5	23.7	7.3	7.23			

in man and monkey. The mechanism by which this change in the rate of electrolyte excretion occurs is not certain. It is possible that a change in the rate of electrolyte excretion could be explained by a similar change in glomerular filtration rate. Indeed, in two of the five calcium infusion studies in man an increase in filtration rate was observed coincident with the peak increase in salt excretion. However, in the remaining experiments in man and monkey, no measurable changes in filtration rate were apparent. Furthermore, in those experiments where a slight increase in filtration rate did occur, the markedly elevated rate of salt excretion persisted after the filtration rate had returned to control levels (Figure 1, Table I). The changes in salt excretion are compared with the changes in filtration rate in Figure

4, but no consistent relation is apparent. In the chelate infusion experiments the falls in electrolyte excretion were not associated with a measurable fall in filtration rate. These data, therefore, show no consistent trend to suggest that the changes in salt excretion are mediated through changes in glomerular filtration rate. Instead, they imply that a change in plasma calcium concentration and in the rate of calcium excretion effects an immediate and opposite change in the rate of tubular reabsorption of sodium and chloride. Figure 5 suggests that this altered tubular function correlates best with the change in the rate of calcium excretion.

The contention that the salt diuresis is caused by the osmotic load imposed by the calcium does not appear tenable. The salt diuresis produced

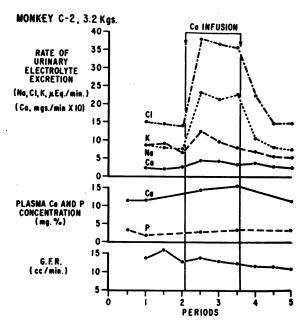


FIG. 2. THE EFFECT OF A CALCIUM INFUSION ON RENAL FUNCTION, ELECTROLYTE EXCRETION, CALCIUM AND PHOSPHORUS PLASMA CONCENTRATIONS IN MONKEY

by the calcium infusions in man averaged almost twenty times in total solute that due to the calcium *per se*. Similarly, after the chelate infusions, the fall in excretion of salt far exceeded in total solute the coincident decrease in free calcium excretion.

The site in the tubular lumen or in the tubular cells affected by a change in the rate of calcium excretion remains unknown. It has been demonstrated in isolated flounder tubules that changing calcium concentration affects the rate of phenol red transport (12). Of interest is the fact that considerable changes in the urinary pH by acid or alkaline infusions did not appreciably alter the saluresis of a standardized calcium load (20 ml. calcium gluconate intravenously).

The consistent and prompt increase in the rate of phosphorus excretion and the slower rise in plasma phosphorus concentration produced by the administration of calcium deserve some comment. It has been repeatedly demonstrated that a calcium infusion in normal man will reduce the overall rate of phosphorus excretion in the subsequent 24 hour period (13, 14). However, it has also been noted that comparable calcium loads in hypoparathyroid subjects, or in normal subjects in whom the rate of phosphorus excretion is measured during the infusion and shortly thereafter, produce an immediate increase in phosphorus ex-

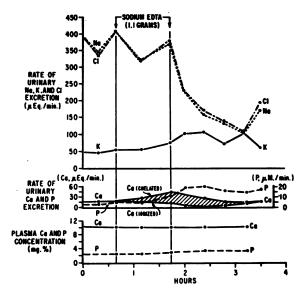


FIG. 3. THE EFFECT OF A CHELATING INFUSION ON PLASMA CALCIUM CONCENTRATION, FREE CALCIUM EXCRETION, RENAL FUNCTION AND ELECTROLYTE EXCRETION IN MAN

cretion (13–15). This latter observation appears in substantial agreement with those reported here. The apparent discrepancy suggests that the calcium infusion evokes a prompt increase in the rate of phosphorus excretion prior to its slower and opposite effect in reducing the rate of excretion. This latter change has been attributed to the gradual suppression of parathyroid function with a consequent increase in the rate of phosphorus reabsorption by the renal tubules (13, 14).

The cause of the more immediate increase in phosphorus excretion is not established. conceivable that the calcium infusion promptly stimulated parathyroid function with a consequent reduction in tubular reabsorption of phosphorus. However, this alternate explanation is not consistent with the large body of evidence which argues that a calcium infusion suppresses parathyroid function (13, 14, 16, 17). It is likely that, in part at least, this increased rate of excretion simply reflects the rising plasma phosphorus concentrations produced by the administration of cal-However, the change in excretory rate seems more impressive and appears to precede the slower rise in plasma phosphorus concentration. It is tempting to attribute this phosphate diuresis in large part to the immediate alteration in tubular function effected by the calcium administration. In this view, the reduced capacity for the reabsorption of sodium chloride and phosphorus may

TABLE V The effects of a chelating infusion on renal function and electrolyte excretion in man

					-	Urine electrolyte excretion	e excretion					
		Clearances	ances				Calcium	H H		-	Plasma concentration	centration
Subject	Periods	Inulin	PAH	Sodium	Chloride	Potassium	Free L	Digested	Phosphorus	volume	Calcium	Phosphorus
S. C.	Control*	ml./msn. 124	ml./min. 555	µEq./min. 346	μEq./min. 353	μEq./min. 127	μΕq./msn. 7.2 7	nin. 7.2	μ <i>M/min.</i> 4.1	ml./min. 5.3	ms. % 9.2	ms. % 2.9
 	EDTA (76 ml.) infusion	134 124	670 576	335 298	331 258	131 131 144	5.3	31.5	5.2 8.9	7.2 4.9	 - 8.6	3.5
 	After EDTA infusion		473		225		2.4	58.6 43.0	11.8	. — 6.9 5.1	 8:8 	3.3
W. R.	Control*	169	649	372	380	136	15.1	15.1	37.3	8.5	10.7	5.1
 	EDTA (60 ml.) infusion	— 156 161		339 292	331 258	124 118	15.3	22.8	42.2	9.1	10.4 9.8	
 	After EDTA	158 152 170	. — 610 596 605	273 247 253	233 228- 228	112 93 84	10.9 8.2 8.5	22.4 23.0 15.9	48.3 48.3	7.8 7.8 3.3 3.3	9.8	4.7
D. B.	Control*	126	825	379	343	46	16.6	16.6	3.8	3.9	10.9	2.4
 	EDTA (110 ml.) infusion	128 142	805 807 806	321	382	55 75	15.1 12.0	22.2	4.1	2.6	 10:0 10:0	2.4
 	After EDTA	136 122 122	898 879 740	231 157 133	231 162 139	102 106 71	5.2 2.9 5.0	36.4 26.5 15.7	18.6 20.3 16.0	8.0 12.1 3.4	10.2	3.2

* Controls represent the average of three 20 minute periods. Subsequent periods varied between 20 and 25 minutes in length.

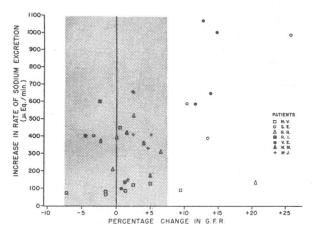


Fig. 4. Changes in Sodium Excretion Plotted Against Changes in Glomerular Filtration Rate

Shaded areas represent changes of ± 7.5 per cent in filtration rate—changes which are within the experimental error.

all represent the direct effect of a sudden increase in filtered calcium load.

The slow rise in plasma phosphorus concentration noted toward the end of the calcium infusion and thereafter agrees with similar observations reported by others (17, 18). This finding has been attributed to the rapid release of phosphorus from some source such as bone or tissue cells. These data are in accord with such a hypothesis but do not help to delineate the site from which the phosphorus stores were transferred nor the mechanism by which hypercalcemia induces such a transfer.

The slight tendency towards an increase in phosphorus excretion toward the end and after the chelating infusion may best be explained by an increased secretion of parathyroid hormone. An increased rate of hormone secretion would be expected to result from a falling plasma calcium level (19, 20) induced by the increased urinary loss of calcium in the chelated form.

The difference between the consistent increase in potassium excretion in the monkey and the inconsistent changes in man after a comparable calcium load may reflect the basic dietary habits of both species. The monkey maintained on a predominantly fruit diet responds like any subject on a sodium free regimen. If an anion load is imposed by a calcium induced chloruresis, potassium is excreted because less sodium is available

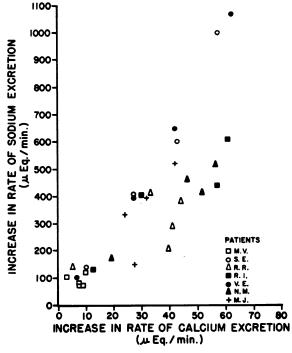


FIG. 5. CHANGES IN SODIUM EXCRETION IN THE IN-FUSION STUDIES IN MAN PLOTTED AGAINST CHANGES IN THE RATE OF EXCRETION OF CALCIUM

(21). An alternate hypothesis to explain this difference would place the calcium effect directly on sodium reabsorption at a site proximal to the potassium secreting segment.

Whether the salt diuresis induced by hypercalcemia might ultimately prove of therapeutic value in the edematous subject remains to be seen. As a separate form of therapy or combined with other known diuretic agents, such calcium loads might prove therapeutically feasible.

SUMMARY

- 1. Calcium infusions in man and monkey at the rate of 0.1 mg. calcium per minute per kilogram produce a prompt increase in the rate of sodium, chloride, and water excretion.
- 2. Single intravenous administration of 10, 20, and 40 ml. of 10 per cent calcium gluconate solution in man produces a comparable increase in the rate of salt and water excretion in proportion to the dose administered.
- 3. The calcium infusions or single intravenous injections evoke a prompt increase in the rate of phosphorus excretion.

- 4. The effects of a single intravenous injection of calcium are not appreciably modified by the prior acidification or alkalinization of the urine.
- 5. A reduction in the plasma calcium concentration by the administration of a chelating agent causes a fall in the rate of salt excretion.

REFERENCES

- Mandl, F. Klinisches und experimentelles zur frage der lokalisierten und generalisierten ostitis fibrosa. Arch. klin. Chir. 1926, 143, 245.
- Gutman, A. B., Swenson, P. C., and Parsons, W. B.
 The differential diagnosis of hyperparathyroidism.
 J. Amer. med. Ass. 1934, 103, 87.
- Lightwood, R. Idiopathic hypercalcaemia in infants with failure to thrive. Arch. Dis. Childh. 1952, 27, 302.
- Dietrick, J. E., Whedon, G. D., and Shorr, E. Effect of immobilization upon various metabolic and physiological functions of normal man. Amer. J. Med. 1948, 4, 3.
- Gribetz, D., Sweet, A. Y., Becker, A. M., Levitt, M.
 F., and Hodes, H. L. The use of anabolic steroids to reduce hypercalcemia and hypercalciuria caused by immobilization in paralytic poliomyelitis. In press.
- Schelling, D. H. Parathyroids in Health and Disease. St. Louis, C. V. Mosby, 1935.
- Wolf, A. V., and Ball, S. M. Effect of intravenous calcium salts on renal excretion in the dog. Amer. J. Physiol. 1949, 158, 205.
- Levitt, M. F., Turner, L. B., Sweet, A. Y., and Pandiri, D. The response of bone, connective tissue, and muscle to acute acidosis. J. clin. Invest. 1956, 35, 98.
- Levitt, M. F., Turner, L. B., and Sweet, A. Y. The effect of experimental venous obstruction on salt and water distribution and excretion in man. J. clin. Invest. 1952, 31, 885.
- Fiske, C. H., and Subbarow, Y. The colorimetric determination of phosphorus. J. biol. Chem. 1925, 66, 375.

- Kramer, B., and Tisdall, F. F. The direct quanitative determination of sodium, potassium, calcium and magnesium in small amounts of blood. J. biol. Chem. 1921, 48, 223.
- 12. Puck, T. T., Wasserman, K., and Fishman, A. P. Some effects of inorganic ions on the active transport of phenol red by isolated kidney tubules of the flounder. J. cell. comp. Physiol. 1952, 40, 73.
- Howard, J. E., Hopkins, T. R., and Connor, T. B.
 On certain physiological responses to intravenous injection of calcium salts into normal, hyperparathyroid and hypoparathyroid persons. J. clin. Endocr. 1953, 13, 1.
- Hiatt, H. H., and Thompson, D. D. Some effects of intravenously administered calcium on inorganic phosphorus metabolism. J. clin. Invest. 1957, 36, 573.
- Jackson, W. P. U., Hoffenberg, R., Linder, G. C., and Irwin, L. Syndrome of steatorrhea, pseudohypoparathyroidism and amenorrhea. J. clin. Endocr. 1956, 16, 1043.
- Albright, F., and Reifenstein, E. C., Jr. The Parathyroid Glands and Metabolic Bone Disease. Baltimore, Williams and Wilkins, 1948.
- Baylor, C. H., Van Alstine, H. E., Keutmann, E. H., and Bassett, S. H. The fate of intravenously administered calcium. Effect on urinary calcium and phosphorus, fecal calcium and calcium-phosphorus balance. J. clin. Invest. 1950, 29, 1167.
- Salvesen, H. A., Hastings, A. B., and McIntosh, J. F. The effect of the administration of calcium salts on the inorganic composition of the blood. J. biol. Chem. 1924, 60, 327.
- Albright, F. The parathyroids—physiology and therapeutics. J. Amer. med. Ass. 1941, 117, 527.
- Patt, H. M., and Luckhardt, A. B. Relation of a low blood calcium to parathyroid secretion. Endocrinology 1942, 31, 384.
- Schwartz, W. B., Jenson, R. L., and Relman, A. S.
 The disposition of acid administered to sodium-depleted subjects: The renal response and the role of the whole body buffers. J. clin. Invest. 1954, 33, 587.