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Many diseases have been studied by transfusing
patients with normal red cells of heterologous blood
group and the identification and enumeration of
the donor’s cells in the circulation of the subject by
the differential agglutination method of Ashby.
In certain of such experiments the assumption may
be made, or the fact proven by cross transfusion,
that the transfused cells are destroyed in the same
manner and at the same rate as the subject’s own.
DeGowin, Sheets, and Hamilton (1) were the first
to demonstrate that orce the rate of disappearance

of the biologically tagged cells is determined by |

adequate counts, contemporaneous enumerations
of the subject’s own cells can be employed with
certain assumptions to calculate the rate of cell re-
lease. Thus the patterns of both production and
destruction of red cells may be studied in man by
the transfusion technique. Thorough exploitation
of the possibilities of this quantitative method
promises further insight into the mechanisms of
many diseases of the blood.

In normal human beings a state of equilibrium
is maintained by the production and destruction of
erythrocytes at equal rates. The resulting concen-
tration of erythrocytes in the circulation remains,
therefore, approximately constant, barring tem-
porary shifts in plasma volume and the loss of
blood during menstruation. This constitutes the
normal steady state. In certain diseases, however,
steady states are maintained for many months dur-
ing which the erythrocyte levels in the circulation
are higher or lower than normal. Theoretically
these abnormal steady states can occur in several
ways. The state of oligocythemia apparently does
occur either with a normal numerical rate of pro-

1This investigation was supported in part by the
Medical Research and Development Board, Office of the
Surgeon General, Department of the Army, Under Con-
tract No. DA-49-007-MD-485.

duction of cells and an increased rate of destruction,
or with a normal rate of loss and a diminished rate
of numerical production. Polycythemia results
from an increased rate of numerical production
and a normal or a disproportionately diminished
rate of destruction.

Consideration of the facts in pernicious anemia,
however, bring the realization that the foregoing
statements contain the assumption that erythro-
cytes appear in the peripheral circulation at the
same rate that they are numerically produced in the
bone marrow.

The present studies focus attention on another
phenomenon which we shall term the rate of nu-
merical release of erythrocytes from the bone
marrow, henceforth shortened to rate of cell re-
lease. By this is meant the number of erythrocytes
released to the peripheral circulation from the bone
marrow in unit time. This rate may or may not
coincide with the numerical rate of erythrogenesis
but it is the process which can be measured by the
methods employed in these studies.

In this paper we present graphic methods for
analyzing the data obtained in transfusion ex-
periments by the technique of differential agglu-
tination. The discussion is so organized that the
text relating to the graphic presentation and the
argument involving simple algebraic manipulations
is printed in the usual sized type, whereas the strict
mathematical proofs employing calculus are pre-
sented in fine print and may be passed over at the
option of the reader.

Previously (2) it was shown that in many cases
the loss of erythrocytes from the circulation oc-
curs either solely by senescence or by aging plus
random destruction. Here we will consider pri-
marily the effect of random destruction on the
equilibrium between rate of cell release and loss
of cells in four situations: the normal steady state,

163



164

E. L. DEGOWIN, J. A. ELLIS, R. F. SHEETS, H. E. HAMILTON, AND C. D. JANNEY

TIME—

Rondom Deslruchive Mechesism
Acting Constenlly —
Numbers of \ - P~
Cells in \ ~ ] N
Successive - - - ~
Crops
) ~ ~ ~ )
R‘ | — Il 1 1 R‘
| | RI
rec
Cell Counts N Find 1'% y
in Subject
NORMAL INDUCTION ABNORMAL RECOVERY NORMAL
STEADY STATE PHASE STEADY STATE PHASE STEADY STATE
L—'—I’iRIOD OF RANDOM DESTRUCTION ’J
Rere of Erylhropoiesis
Conslanl Throughout
F16. 1. CHANGES IN THE ERYTHROCYTE LEVEL EFFECTED BY A HyproTHETICAL RANDOM DE-
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Cell counts are plotted on the vertical axis of Cartesian coordinates against time units on the
horizontal axis. The rate of cell release is stipulated to be normal throughout. The sum of
the cell counts of all contemporaneous crops at any time t equals the erythrocyte count of the
subject. The assumptions are made that the random destructive mechanism removes successive
crops of erythrocytes in the same manner and that, once the cells are injured, they continue to
be lost at random after the destructive mechanism has ceased.

Under these conditions the erythrocyte level R, in the normal steady state drops during an in-
duction phase Rina to attain an equilibrium at an abnormal steady state R’. When the random
destructive mechanism ceases to act, the cell level of the normal steady state is resumed during a
recovery phase R:ee. This concept offers an explanation for the constant low erythrocyte level

in a patient with hemolytic anemia.

the induction phase of ramdom destruction, the
steady state of ramdom destruction, and the re-
covery phase.

The chief features of this conception are repre-
sented in Figure 1 by an idealized graph on Car-
tesian coordinates. The upper part depicts a com-
posite of four contemporaneous crops of cells, each
appearing in the circulation at a different time,
persisting for four units of time and then disap-
pearing, to be replaced by a succeeding crop.
Thus the rate of cell release is represented as con-
stant. During the normal steady state all the cells
of a crop persist for four units of time when they
are lost practically simultaneously as a result of
aging.

Actually, of course, cell production and de-
struction are continuous processes. The graphic
representation reflects the true state of affairs when
the time intervals approach the infinitesimal and
the number of cells in each crop is proportionately

diminished. In a normal person the life span of
the erythrocyte is probably 120 = 15 days and the
cell is lost from the circulation by normal aging,
whatever that process may be. Henceforth, we
shall refer to the life span of the normal erythro-
cyte, from the time when it is released to the circu-
lation from the bone marrow until it is destroyed
by the normal aging process, as the potential life
span. This is actually attained only in the absence
of a destructive mechanism other than normal
aging.

At a certain point in the idealized figure it is
conceived that a destructive mechanism begins to
act constantly, catching each crop in a different
stage of its life span. The cells of the crop are de-
stroyed at random during the remainder of their
potential life span, describing a curve which ter-
minates abruptly when the potential life span is at-
tained and the remainder of the crop is lost by ag-
ing. When the destructive mechanism ceases to
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act, there is a phase in which new crops persist
normally while the pre-existing crops are still be-
ing lost in random fashion because of previous
damage. 4
The lower portion of the graph depicts the re-
sulting cell counts of the subject, computed as the
sums of the cells in all contemporary crops. The
cell level, normally R,, decreases at the beginning
of random destruction, making a curve Ry, dur-
ing what we have termed the induction phase.
Ultimately, an abnormal steady state R' is at-
tained which continues as long as the constant rate
of random destruction obtains. This demonstrates
a mechanism for the maintenance of a constant low
cell count over a period of many months in a patient
with hemolytic anemia. When the random de-
struction ceases, another transition in the cell level
occurs which we have termed the recovery phase.

‘When the plasma volume and the distribution of eryth-
rocytes throughout this volume remain constant, the
number of cells per mm.* in any sample is a constant
fraction of the total number of cells in the circulation.
Even in cases in which the blood volume and the dis-
tribution of erythrocytes may not remain constant, the
treatment to be presented is valid if corrected cell counts
are used. It is therefore practical for this presentation
to deal in cell concentrations.

THE NORMAL STEADY STATE

The normal steady state of the erythrocytes may
be conceived as the result of the release from the
bone marrow to the peripheral circulation of the
same number of new mature cells each day and the
survival of each daily crop for about 120 days, the
potential life span. This situation would be repre-
sented to a closer approximation in the idealized
graph in Figure 1 by 120 simultaneous crops of
cells, instead of the easily pictured four.

The graph of the normal steady state may be ex-
amined in more detail in Figure 2, where crop a
is succeeded by crop ¢, b by f, ¢ by g, and d by A.
Each crop of cells persists for its potential life span
and then is lost by aging. The number of cells
in each crop is a, and the potential life span of
each crop in the idealized graph is four units of
time. The resulting cell count of the recipient R,
at any time is the sum of the cells in each crop in
the circulation simultaneously, or 4 a, in the graph.
The cell level R, for the steady state has, of course,
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Values are plotted on Cartesian coordinates. The po-
tential life span of a crop of transfused cells is assumed
to be the same as a crop of the recipient’s own cells, and
the erythrocytes of both populations are lost only by nor-
mal aging. Unlike the crops of the recipient’s cells
which are replaced when lost, the transfused crops are not
replaced. Hence the sums of transfused cells diminish as
time passes after transfusion and the counts form a sloping
straight line which intersects the time axis when the
youngest of the transfused cells has attained the end of
its potential life span.

been established clinically as being between 4.5
and 5.5 millions per mm.® for the adult human male.
When the subject is transfused with normal
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fresh erythrocytes during the normal steady state,
the donor’s cells disappear from the subject’s cir-
culation as they attain senescence. If the donor be
also in the steady state when the blood is collected,
the transfused blood will contain equal numbers of
cells of all ages from O to the potential life span.
The tracer cells are depicted in our model as con-
sisting of four crops with respective ages of 0, 1,
2, and 3 time units. The count of the transfused
cells in the subject at any time is the sum of the
numbers present in each transfused crop. Since
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F16. 3. DisTorTION OF THE DISAPPEARANCE CURVE OF
INAGGLUTINABLE CELLS BY THE AssUMPTION THAT ALL
CeLLs oF A Crop ARE LosST SIMULTANEOUSLY BY AGING

The mean potential life span of erythrocytes is denoted
by T. The distribution curve of the potential life spans
of the cells of a single crop should then produce a curve
as in (A). When transfused, that crop will then have
a survival curve which terminates in an S-shaped seg-
ment as in (C). The composite formed by the sums of
cells in many such curves of transfused crops, terminating
at various times after transfusion until the youngest cell
has attained its life span, is a straight sloping line until
it deviates in the region of the distribution of life spans
about T as in (E). This is compared with the straight
line slope resulting from the assumption that the distri-
bution of life spans about T is negligible as in (F). It
is concluded that the error of counting of the inagglu-
tinable cells is such as to obscure the difference between
the assumed and the theoretical curves so that the simpler
assumption is justified in experimental work.
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the crops of donor’s cells are not replaced when
lost, the count of transfused cells reaches zero
concentration when the youngest of the donor’s
cells have attained their potential life span T.
When large numbers of crops are considered, the
curve of disappearance becomes essentially a
straight line.

We have shown previously (2) that the equation for

this straight line is

t No

1) M=No(1—-T— =—,I—,(T—t), when 0t T,
where M = concentration of cells remaining at any time
t when normal aging is the sole cause of loss, No = con-
centration of donor’s cells immediately after transfusion,
T = potential life span of normal cells in days from time
of release from the bone marrow to death by senescence,
t = time after transfusion.

Therefore, No/T is the number of cells in a day’s crop
since the number of transfused crops equals T. The num-
ber of cell crops still present, t days after transfusion, is
T—t

Actually all cells in a crop do not disappear at pre-
cisely the same age. There is a distribution of individual
life spans about the mean value T, as shown qualitatively
in Figure 3A. The resulting survival curve in 3C is
obtained by plotting the number of cells of this crop
surviving at time t, against t. In 3B the assumption is
made that all cells are removed at the same age T, which
results in the “rectangular” survival curve in 3D. It has
been shown previously (2) that this assumption leads
to the disappearance curve 3F, which is a straight line in-
tersecting the time axis at T (equation 1). The actual
disappearance curve resembles that depicted in 3E where
the straight line is followed until t approaches T, when
it tails out slightly. In Figure 3E the effect has been
emphasized by exaggeration. The straight segment has
been observed by many workers, but the tailing is difficult
to measure because of the experimental errors when the
inagglutinable cell counts are low. Ignoring the tailing
does not introduce an appreciable error in the calcula-
tion of the erythrocyte population or the rate of cell re-
lease. Hence, unless otherwise ‘stated, the “rectangular”
survival curve 3D will be assumed in the following dis-
cussion.

RANDOM LOSS OF TRANSFUSED ERYTHROCYTES

Previously (2) we have considered the mathe-
matical implications of the random loss of trans-
fused cells and have shown that if erythrocytes are
destroyed at a constant percentage rate, irrespective
of their age, the cell counts describe a curve which
is the resultant of an exponential loss plus an ad-
ditional loss from normal senescence. This curve
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intersects the time axis at T and its equation is

@ N-= No(l - %)e“" = (T -t Nle,
when 0 L t £ T,

where N, = concentration of domor’s cells im-
mediately after transfusion, T = potential life span
of cells from release from the bone marrow until
death by normal senescence, t = time after trans-
fusion, N = count of donor’s cells at time t, e =
base of natural logarithms, and b = constant per-
centage rate of random destruction (e.g., if 2 per
cent of the surviving cells are lost per day, then
b = 0.02), (T — t) = number of remaining crops,
No

and (T e"") = number of cells in each surviv-

ing crop at time t.

The rate of random loss of the transfused cells
may be calculated by an adjustment of the ob-
served values for the inagglutinable cell counts to
compensate for loss by normal aging. This is
equivalent to a manipulation which abolishes all
loss by aging so that the disappearance from ran-
dom destruction is sharply defined. For this pur-
pose it is convenient to introduce a quantity Q,
which is a function of time, and is defined by the
equation :

D) Q=rp=—1"

where the symbols have the same meaning as in
equation 1.

In the practical determination of the Q curve it
is usually more convenient to rewrite equation 3
thus:

@ ‘NQ =

,when0 <t £ T,

N .
t
-5

N,Q can then be considered as the count of trans-
fused cells with infinite potential life spans whose
actual life spans thus terminate only by random
destruction. The values for N,Q are calculated,
rather than those for Q. This obviates the neces-
sity for estimating any value for N, at the begin-
ning. The first inagglutinable cell count may be
unsatisfactory to employ as N, because too much
emphasis is placed on a single determination.
Once the No,Q values have been plotted and a
smoothed curve drawn through the points, N, may
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be estimated by finding where the curve intersects
the vertical axis t = O, because at this point
Q = 1. The scale of ordinates for the N,Q curve
runs from O to N,. The graph made by values
of N,Q can also be used as a graph of Q by sub-
stituting a vertical scale from O to 1.

To construct a model, such as is pictured in
Figure 1, specific modes of action of the destructive
mechanism must be assumed. In this case we have
chosen to consider a hypothetical situation which
is a composite of several examples confronting us
in our experimental studies to be presented in later
papers. The assumptions are: (a) The destruc-
tive mechanism acts on all cells of each crop at
random; (b) at the beginning of action of the
destructive mechanism the cells of all crops are
damaged simultaneously and irrespective of age
so that random destruction starts in all crops at
the same time; (¢) when the destructive mecha-
nism ceases, the damaged cells of the pre-existing
crops continue to be lost at random throughout the
potential life span of the crops, whereas the cells of
the new crops are undamaged.

For the purposes of this discussion it is neces-
sary to expand the meaning of the term random
destruction. The reader is perhaps accustomed
to thinking of the steady state of random destruc-
tion as implying that the percentage rate of loss
must be constant. However, the authors do not
conceive this as being necessarily true. Let it be
supposed that the cells of any given crop are de-
stroyed at random, but the percentage rate of loss
varies with the time which has elapsed since the
destructive mechanism first began to act on the cells
of this particular crop. Then, if the disappearance
curve of the crop is plotted on semilogarithmic
coordinates, a straight line will not result, and
the curve is not exponential in the usual sense.
Yet, if the disappearance curves of successive
crops (depicted in Figure 1) are congruent, a
steady state will exist, provided the rate of cell
release is constant.

The implications of this hypothesis for three particular
groups of cell crops are: (a) For cell crops present in the
subject at the inception of the induction phase, the
destructive mechanism begins to act at the inception of
the phase; hence, the percentage rate of random destruc-
tion for these crops depends on the length of time since
the beginning of the phase. The age of the cells at the
beginning of ‘the phase is inconsequential. (b) For cell
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crops produced after the beginning of the induction phase,
the destructive mechanism begins acting at the time the
cells are extruded into the circulation; hence, the per-
centage rate of random loss for these crops varies with
the age of the cells. (c) For crops of transfused cells,
the destructive mechanism begins to act at the time of
transfusion; hence, the percentage rate of random loss
for these crops depends on the length of time since
transfusion. It does not depend on the age of the cells
at the time of transfusion.

If it be assumed that the disappearance curves of suc-
cessive crops of cells are congruent, and the transfused
crops of cells are destroyed in the same manner as the
subject’s cells, then it follows that the disappearance
curve of the transfused cells will be the same, regardless
of the time at which it is determined. This situation may
be termed a “constant process of random destruction.”
It is presumed to exist from the beginning of the induc-
tion phase, through the steady state of random destruction,
to the beginning of the recovery phase.

Graphic Demonstration of Random Loss

Cartesian coordinates. When the N,Q values
are calculated from the observed counts for the in-
agglutinable cells by the use of equation 4, they
may be plotted on Cartesian (ordinary rectangular)
coordinates. If there has been no random loss of
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cells, a straight horizontal line is formed when the
NoQ values are plotted on the vertical axis and
time after transfusion t is plotted on the horizontal
axis. If, however, there is random loss, in addi-
tion to disappearance by normal aging, the result-
ing curve will be curvilinear and lie above the curve
of the observed values for the inagglutinable cell
counts (Figure 4). The N,Q curve may approach,
but never reaches, the horizontal axis whereas the
curve of observed values intersects the time axis
at T, the mean potential life span of the cells. This
method of plotting demonstrates the presence or
absence of random destruction of the inagglutinable
cells, but gives no obvious information as to the
percentage rate of random loss. Plotting on Car-
tesian coordinates is, however, necessary to ob-
tain the area under the N,Q curve employed in
certain methods to be discussed later.
Semilogarithmic coordinates. When the N,Q
values are plotted on a vertical semilogarithmic
scale against values for time t on the horizontal rec-
tangular scale, the curve is a horizontal straight
line when there has been no random loss (Figure
4). A straight line sloping downward to the right
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FIG. 4. MEASUREMENT OF RATE oF RaNDoM Loss By GRAPHIC METHODS

The solid line curve on Cartesian coordinates was constructed from values
for inagglutinable cell counts N on the assumption that the potential life
span T of the transfused cells was 4 time units and that there was a con-
stant random destruction, in addition to loss by aging. The N.Q values
were then calculated, using equation 4, and form the curve of broken lines
which approaches the time axis, but never intersects it. Plotting the N.Q
values on semilog coordinates produces a straight line with slope downward
to the right. When the curve of NoQ values deviates from the horizontal
(in either system of coordinates) there has been random loss of transfused
cells. A straight line slope on semilog coordinates indicates a constant per-
centage rate of random loss. The slope of the line gives the percentage rate

of loss.
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indicates random loss in exponential fashion, i.e.,
at a constant percentage rate. The slope of the
curve is proportional to the percentage rate of
loss. Thus if the sloping curve is not a straight
line but deviates toward the horizontal, there is
deceleration in the percentage rate of loss; if the
curve deviates toward the vertical, the percentage
rate is accelerating. This method of plotting,
therefore, indicates not only the presence of ran-
dom loss of cells but also gives information as to
the rate of random loss. The example plotted in
Figure 4 shows observed values corresponding to
equation 2 from which N,Q values were calcu-
lated by equation 4. The constant rate of random
loss represented here is a special case of our more
general hypothesis, but it occurs very commonly.

In equations 3 and 4 we have taken the simple expres-
sion for M, based on the rectangular approximation of the
cell survival curve in Figure 3D, so that M =0 at t=T.
If NoQ is to have a finite value at t =T, N must also be
O. Since the rectangular survival curve is not an ac-
curate description of nature, experimental values of N are
found to have a small value greater than O at t=T.
This makes N.Q, as determined by equation 4, approach
infinity as t approaches T. This difficulty can be obviated
by incorporating in equations 3 and 4 an expression for
M corresponding to the more accurate description shown
in Figure 3E. In practice, however, it is more convenient
if the end portion of the No.Q curve is determined by ex-
trapolation from the region in which Figure 3F and
equation 1 are accurate descriptions. The exact shape of
the N.Q curve near the end, in any event, does not
markedly affect the results of the graphic methods to be
presented.

In calculating values for N,Q in equation 4 it is
necessary at the outset to select a value for T, since
the mathematical form of Q is unknown. This is
often difficult experimentally because the actual
counts of the donor’s cells merge gradually into the
blank counts of the subject’s own inagglutinable
cells. An error in the selection of the value for T
results in a curved line when the N,Q values are
plotted on semilog paper. This curvature can be
misinterpreted as indicating changes in the rate of
random destruction. The probability of such an
error can be lessened by calculating the N,Q values
with several assumptions for T. In practice it
often happens that no value for T can be found
which gives a straight line curve, in which case
it seems most practical to assume T = 120 days,
unless there is definite evidence to the contrary.
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Fortunately, during the first 60 to 90 days of a
transfusion study, the calculations of N,Q are
relatively insensitive to slight errors in the value
chosen for T. But when t approaches T, slight
changes in the value for T make large differences
in the NoQ values. The effect of the assumption
of the rectangular survival curve on the N,Q
values has previously been discussed. For these
reasons, most emphasis should be placed on the
NoQ values during the first 60 to 90 days. In this
paper T will be assumed to be the same for both
donor’s and subject’s cells.

The theoretical implications of the Q curve are wider
than so far indicated. In an earlier paper (2) we used
the equation
) B —aNy;
where N =number of observed inagglutinable cells at
time t after transfusion, M = number of cells at time t if
there were no loss except by aging, N, =number of
donor’s cells immediately after transfusion, a = constant
of proportionality or 1/T, T = potential life span of nor-
mal cells from time of release from the bone marrow
to death by senescence. If some of the donor’s cells are
destroyed at random irrespective of their age, the con-
centration actually present at time t is less than M and
this quantity can be represented by N. Since all crops
present at time t have been exposed to the destructive
mechanism for the same length of time, they have all been
reduced in numbers by the same fraction N/M. Further-
more, the number in the crop lost by normal aging at that
time is only N/M times as large as it would have been
without random destruction. Thus the rate of disap-
pearance from normal aging is — (N/M)aN,. This ex-
pression includes only the cells which are lost by normal
aging.

Assume that the random destructive mechanism removes
cells at a rate proportional to the number of cells present
and a coefficient which depends upon the length of time
since the cells were first exposed to the destructive factor.
Then the rate of removal of the cells by this mechanism
becomes —k(A)N, where A =length of time since first
exposure, and k(M) is the percentage rate of destruction
of cells after time A\. If the donor’s cells are first ex-
posed to the destructive mechanism at the time of trans-
fusion, both N and t are measured from the same point,
hence A =t, and the rate of removal due to the destructive
mechanism is —k(t)N. The total rate of removal is
then:

dN

©) =- g aNo — k(t)N.

Integration of equation 6 yields

M = No(1 — at), when 0 t£ T,

) N=(T-t) e fE, yhen 0gtgT,
where t' = any value of time between O and t.
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Since Q has been defined in equation 3 as Q = N/M,
therefore

® Q=e S ghen 0gtg T

The special but common case, in which k(t’) has some
constant value b, gives the expression used in equation
2: Q=e™, when k(t') =b.

No cells of the crop extruded from the bone marrow pre-
cisely at the time of transfusion of tagged cells are lost
by aging during the transfusion experiment because the
study coincides with their life span. If the subject’s cells
are destroyed in the same manner as those of the donor,
one gets the following :

dr
) 3= kO,
where r = number of subject’s cells in the crop at time t
and A =length of time since cells were first exposed to the
destructive mechanism. In this case, also, A=t. Hence
dr

(10) a; = - k(t)l',

43)) IO _ o~k
To

where r, is the original number of cells in the crop.
From equations 8 and 11

(12) 0 9.

0

The expression r(t)/ro gives the proportion of cells of
the crop which survive at time t, hence at age t. Thus
Q(t) is also the survival curve for this crop of cells.
Since it is assumed that each crop is treated similarly,
regardless of the time of appearance in the circulation,
Q(t) is the survival curve giving the probability that any
cell will survive at least to age t. The symbol ¢(t) has
been employed by other workers (3-5) to designate this
probability. Therefore the technique of differential ag-
glutination after transfusion affords a reasonably direct
method of determining the cell survival curve.

STEADY STATE DURING RANDOM DESTRUCTION

After the constant process of random destruction
of the subject’s erythrocytes has been in operation
for sufficient time, his erythrocyte counts cease to
decrease but stabilize at a level below that of the
normal steady state R, (Figure 1). The new
steady state is maintained as long as the rate of
cell release remains constant and the random loss
is unchanged.

Detailed examination of this abnormal steady
state is assisted by study of Figure 5. Originally
each crop is composed of the same number of cells,
and for the present case this number is assumed
to be the same as for those crops formed during
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the normal steady state. Each crop has an identical
but abnormal disappearance curve. The resulting
erythrocyte level R’ is the sum of the numbers of
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F16. 5. RELATION oF D1sAPPEARANCE CURVE OF TRANS-
FUSED NorRMAL ErvyTHROCYTES T0 CELL LoOSs IN SINGLE
CroPs OF RECIPIENT DURING STEADY STATE OoF RANDOM
DESTRUCTION

During this phase the loss of the cells in each crop of
the recipient is depicted as a curve which ceases at the
termination of the potential life span when the number of
cells abruptly falls to zero as the remainder is lost by
aging, to be replaced by a new crop. The component crops
of the transfused cells are similarly lost except that a
larger proportion of each crop is lost by aging and there
are no replacements. The sums of inagglutinable cells in
the crops present at various times form a disappearance
curve, depicted by the solid line, which actually inter-
sects the time axis at T. When the loss of inagglutinable
cells by aging is compensated for in the computation of
the N.Q values by equation 4, a curve (broken line)
results which can be made congruent with the disap-
pearance curve of any single cell crop of the subject.
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cells of all crops contemporaneous at any time t,
but the contribution of any one crop differs from
all the others.

The lower half of Figure 5 depicts the fate of
normal erythrocytes transfused to the subject dur-

ing this steady state, if the donor’s cells are de-

stroyed in the same manner as those of the sub-
ject. The disappearance curves of the crops of
donor’s cells are similar to those of the subject,
except that the older crops are lost by aging be-
fore as many cells can be destroyed at random.
The sums of the numbers of cells in the transfused
crops at any time t equal the inagglutinable cell
count expressed by equation 7. The values for
NoQ can be computed from the observed counts
using equation 4.

The addition of increments of staggered crops
of recipient’s cells at time t is equivalent to adding
the cells present at successive time units on a single
curve of disappearance or survival. This is il-
lustrated in Figure 6 in which a curve for a single
crop has been divided into vertical rectangles the
sum of whose heights approximates R’. The ac-
curacy of this relation increases when the number
of time units, and hence the number of rectangles,
is enhanced beyond the limit of graphic pre-
sentation. Actually this is the method of integral
calculus in determining an area under a curve.
Similarly, division of the rectangle enclosing the
survival curve for the crop into smaller vertical rec-
tangles shows that the sum of their heights equals
R,, the erythrocyte level of the subject when there
is no random destruction. Hence R’ can be repre-
sented by the area X, and R, by the area X + X'
so that
R’ X
(13) R, X+X"

The cell level R’ could be calculated from the areas
X+ X' if these were known, but no methods are pres-
ently available for the direct measurement of a single crop
of cells, although composites of the crops of a few days
have been measured by labeling the subject’s erythro-
cytes with N** (6) or C* (7).

Relative values for X and X’ may be obtained
by the transfusion of biologically tagged cells to
the subject, provided that the donor’s cells are
destroyed in the same manner as the subject’s and
that the potential life spans of the cells in the two
populations are the same. Thus in Figure 6 both
the upper and lower rectangles have the same base,
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and the height of the N,Q curve of the transfused
cells has been proven to be everywhere propor-
tional to that of the disappearance curve of the
single crop. These curves can, in fact, be made
congruent by drawing them on the same scale.
Therefore

X Y

and from equation 13 we have

'R’ , Y
or R' = Ro(m) .

Y

) r=v+V
This relation applies to any shape of disappearance
curve, provided that the curve of the single crop
can be made congruent with the N,Q curve. The
principal conditions for this are that the recipient’s
and donor’s cells be destroyed at the same rate,
i.e., the same k()), and that they have the same
potential life span T.

The mathematical proof of equation 15 follows. Cal-
lender, Powell, and Witts (3) pointed out that the mean
cell life 7 (i.e., actual mean cell life, whether the loss is
by aging or random destruction) is represented by the
area under the survival curve. Thus, by our assumptions,
7 equals the area under the Q curve between t =0 and
t=T in equation 3. Using the symbolism of calculus,

(16) F= j;TQ(t)dt.

In any steady state the total number of cells must be the
product of the actual mean life span and the rate of
production. Hence, if a, is the normal rate of cell re-
lease, Ro the resulting normal erythrocyte count, and R’
the erythrocyte count in the steady state of random de-
struction during a normal rate of cell release,

(1 7) Ro = aoT
18) R’ = aoT

R’ aoT _ Nor
{9 R~ T = NI

From equations 16 and 19 we have

o NoffQdt  [TNdt
@) g = =TNoT TYFY

Ro No.T

Graphic Method for Estimating Rate of Cell
Release

In practice the estimation of R’ in equation 15 is
relatively simple. The observed inagglutinable cell
counts are recalculated according to equation 4 to
obtain the N,Q values. The latter are plotted on
the vertical axis of Cartesian coordinates, against
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days after transfusion on the abscissa. A smoothed
curve is drawn through the points. This curve
will not intersect the time axis. As shown in
Figure 6, a rectangle is constructed with the verti-
cal axis of the graph as the left side, the horizontal
axis from O to T as the base, a vertical line at T as
the right side ; and the top is formed by a horizontal

oo ————————

4
ol

Single crop of subjecls celis
wilh conslant rale of random /oss

N, 10

time — - T
Loss of Iracer cells with some
rafe of deslruction

F1. 6. GrapHIiC EstiMATION OF ERYTHROCYTE LEVEL
OF THE SUBJECT IN THE STEADY STATE OF RANDOM
DEesTRUCTION

Reference to Figure 5 shows that the subject’s erythro-
cyte count R’ in the steady state of random destruction
is the sum of the numbers of contemporaneous cells in
the four crops. Each crop makes a different contribution
to the sum since a vertical line at time t cuts each disap-
pearance curve at a different time in its life span. The
same value for R’ can be obtained by cutting the disap-
pearance curve of a single crop into vertical rectangles
for each time unit, as in the present figure, and adding
the vertical lengths together. If there were no loss by
random destruction, the disappearance curve of a single
crop would form the rectangle X + X’ and its component
vertical rectangles, when added together, would give the
cell level R, in Figure 5. But the data of a single crop are
not available for measurement whereas it has been shown
that the No.Q values of normal transfused cells, destroyed
in the same random fashion as those of the subject, form
a curve which can be made congruent with the disappear-
ance curve of a single crop of the subject’s cells.
Therefore

R SR SRV 2
R X+X~"Y+Y & NY F+Y

The areas Y and Y+ Y’ may be measured with a
planimeter.
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line through the intersection of the N,Q curve with
the vertical axis. When the exact value for the
subject is unknown, T is usually taken as 120 days.
The area under the curve is Y and the remainder
of the area of the rectangle is Y. The area Y is
measured with a planimeter and the area of the
rectangle Y 4+ Y’ may be obtained in the same
manner or by inspection of the graph paper.

The value for R’ is computed from equation 15
in which R, is usually taken as equal to 5 millions
per mm.2 R’ is the level of the subject’s erythro-
cytes to be expected when (a) the rate of cell re-
lease is normal, (b) the subject’s cells are lost at
random in the same manner as the tracer cells, re-
gardless of the shape of the disappearance curve,
(c) the potential life span of the two cell popula-
tions is approximately equal, (d) the subject is in
a steady state during random destruction of
erythrocytes.

The subject’s actual erythrocyte counts are ob-
tained by subtracting the inagglutinable cell count
from the contemporaneous total cell count. The
actual cell counts of the subject are then compared
with the values computed for R’ and, when they
are significantly higher or lower, it is concluded
that the rate of cell release is greater or less than
normal.

More precisely, the rate of cell release must be pro-
portional to the observed cell count. Thus
actual cell level , _ actual cell level
-—R,——' and o = —-R,—'mo,
where @, =normal rate of cell release, @' =rate of cell
release during the steady state of random destruction.

It is of interest that Dornhorst (5) has used a similar
graphic method for estimating the mean cell life when
normal blood is transfused to a patient with a hemo-
clastic anemia.

Since correct values for R, and T are not always known
for the subject of a study, it is worthy to note the manner
in which errors in assuming values affect the calculated
values for R’ and a'/a.. Analysis reveals that when the
random destruction is very slight, an error in assuming
a value for T produces a much smaller error in R’. But
if the random destruction is great, the error in assuming
a value for T is carried over undiminished in calculating
R’. In any case, the sense of the error is reversed: if T is
too large, R’ is too small. Any error in the assumed value
of R, appears undiminished in the calculated R’; if R, is
taken too large, R’ is proportionately large. Any error
in the calculation of R’ is transmitted undiminished to
the calculated value of the ratio a’/a., but it is reversed
in sense.

@n £-=
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Errors in counting cells are minimized in these graphical
methods because little emphasis is placed on a single de-
termination. In measuring the erythrocyte level of the
subject, counts are made on several days and a mean is
taken. In determining the disappearance curve of trans-
fused cells, the points are plotted and a smooth “average”
curve is drawn. These procedures serve to minimize the
effects of random short-term variations in blood volume.

The other principal assumptions are best considered
when the methods are applied to individual cases. The
plausibility of assuming no systematic change in blood
volume and the same rate of random destruction for the
erythrocytes of donor and recipient depend entirely on the
specific conditions of the individual study.

With the present level of refinement in the experimental
methods these graphic analyses are most useful for dem-
onstrating gross changes in the rate of cell release, for
example, when o' is two or more times as great as Q..
However, if ways are found to better evaluate T and R.
and to remove some remaining uncertainties concerning
the basic hypotheses, these graphic methods may be use-
ful in demonstrating more delicate changes in the rate
of numerical cell production.

INDUCTION PHASE OF RANDOM DESTRUCTION

In Figure 1 the erythrocyte level of the subject
describes a curve Ryq which commences to descend
from the normal level R, to a lower level R’ at the
beginning of the period of random destruction.
In certain experiments it is useful to predict this
transition curve. The expanded graph in Figure 7
shows that the tagged cells have the same curve of
loss as they have in the steady state of random
destruction in Figure 5. The subject’s cells may
be considered in two groups (a) those present at
the beginning of the induction phase, “pre-existing
cells,” and (b) cells released to the circulation
after the beginning of the induction phase, “new
cells.” It will be assumed that the time taken to
change from the normal state to that of random
destruction is negligibly brief. After the change
occurs, a time T must elapse before the steady state
of random destruction is attained.

Each crop of “pre-existing cells” is removed in
the manner shown by the Q curve in Figure 8 un-
til it reaches the end of its potential life span when
the remainder is lost by aging. Each crop is as-
sumed to have the same initial number of cells and
the rate of random destruction of each crop is as-
sumed to be the same. Therefore, the number of
cells remaining in each crop at any time t is the
same, and is proportional to the ordinate of the Q
curve at the time. The number of surviving crops
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F16. 7. RELATION OF THE DISAPPEARANCE CURVE OF
TransrUSED NormarL CeLLs To THE DEcrEasiNG CELL
COUNTS OF THE SUBJECT DURING THE INDUCTION PHASE
oF RanpoM DEsTrUCTION

For purposes of this example it is assumed that each
cell crop exposed to the destructive mechanism is similarly
damaged so that its cells are lost at random irrespective
of their ages. During this phase the sums of the cells
in the “pre-existing” crops are lost in a curve congruent
with the disappearance curve made by the observed values
for the inagglutinable cells transfused during this pe-
riod. The decreasing values for the subject’s cell count
form a curve Ria of two components, one the “pre-
existing” cells and the other the cells formed after
random destruction has begun.

is T —t, since the other crops will have been lost
by senescence. The total number of “pre-existing
cells” remaining at any time t is therefore propor-
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tional to the product (T — t)-Q(t), which is the
densely stippled area in Figure 8.

The production and loss of “new” cells may be
followed in Figure 7. Still assuming that the rate
of cell release remains normal, the total number of
“new” cells at any time t is the sum of the cells
remaining in all crops which have been released
up to that time. The contribution of one crop to
the sum is different from that furnished by any
other at that time. The addition of increments of
staggered crops is equivalent to adding the number
of cells present at successive units of time on a
single curve. This reasoning has been employed
previously in discussing the steady state of random
destruction. In the induction phase, however, the
number of “new” cells present at time t is the sum
of the cells in the new crops produced prior to t.
This sum is represented by the area under the Q
curve in Figure 8 between O and t, shown as the
sparsely stippled portion.

Mo O, /0

Aol 4,0 @

lime —

F1e. 8. GrapHIC ESTIMATION OF THE DESCENDING
CurveE oF ERYTHROCYTE COUNTS IN THE SUBJECT DURING
THE INDUCTION PHASE OF RANDOM DESTRUCTION

The problem is to construct curve Riaa in Figure 7
when R, is known, the cell release rate is normal, and
the rate of random destruction is measurable from the
disappearance curve of the inagglutinable cell counts.
The time T is the potential life span of normal erythro-
cytes, generally 120 days. The curve is constructed
from the N,Q values of the inagglutinable cell counts ob-
tained with equation 4. The intersection of the curve
with the vertical axis determines N,. At any time t the
number of remaining “pre-existing” cells is represented
by the densely stippled area, whereas the number of
“new” cells is represented by the sparsely stippled area.
The entire stippled area is designated Z and the unstippled
remainder of the rectangle is Z’. These areas may be
measured by a planimeter. Points on the curve Riaa are
determined for various times t according to the relation

Rind Z —Z_ )
¥ -rip o Ru-R(zF7).
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The total number of cells at time t is Rynq, which
is represented in Figure 8 by the entire area which
is stippled, either densely or sparsely, now called
Z. As before, R, is proportional to Z + Z’ and at
any time t

Rina _ Z _ 4
T -z47 Rm=R(z57)
As in the steady state, the ratio of these areas can

be determined as well from a plot of N,Q values
as from Q itself.

(22)

The mathematical proof for equation 22 follows: At
any time t (measured now from the beginning of the
induction phase) the pre-existing cells R, have ages be-
tween t and T. The number of daily crops is T —t and
each crop has been reduced from its original size a. to
@Q(t). Thus the total number of pre-existing cells is

(23) Ri(t) = aQ(t)(T — t).

At time t the new crops have ages between O and t.
The number of cells in a crop of age t' (between O and t)
is wQ(t'). Adding all the new crops gives the number
of new cells R,:

@) Ra® = [aQt)dt' = anf Q(t)ar"
The total number of cells then is
(25) Ria(t) = Ry + R,
= a(QO(T - 0 + ffow@iar).
It has already been shown that

17) Ro = aoT.
Combining equations 17 and 25 yields

(e -0 + ffowar)
s - :
Multiplying the numerator and denominator by N./a.
gives
@ Rpay  NREOT -9 + ['NO)dr
Ro N.T

=z
Z+7

Rina(t) = Ro(z—_'z_f,) .

Graphic Method for Estimating Rate of Cell
Release

26) R _

The problem is to construct the expected curve
of the subject’s erythrocyte counts if the rate of
production of cells proceeds at a normal rate and
if the inagglutinable cell counts, or other condi-
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F16. 9. RELATION OF THE DiISAPPEARANCE CURVE OF
TRANSFUSED NORMAL ERYTHROCYTES TO THE INCREASING
CeLL COUNTS OF THE SUBJECT DURING THE RECOVERY
PHASE oF RANDOM DESTRUCTION

Under the specific assumption made in this example the
crops of the subject’s cells, pre-existing when the damag-
ing mechanism ceases, continue to be lost in random fash-
ion, whereas new crops survive normally. During this
phase the sums of both new and pre-existing crops form a
curve Rree which is the expected erythrocyte count of the
patient, provided that the rate of cell release is normal
throughout. The No.Q curve of normal cells, transfused
just before cessation of the destructive mechanism, can
be made congruent with the disappearance curve of a
single crop of “pre-existing” cells. But the values on
this curve plus the baseline R’ are still less than the val-
ues for Rree because the latter is enhanced by the ad-
dition of the cells of the “new” crops which survive
normally.
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tions of the experiment, indicate that the data are
derived during the induction phase. The previous
assumptions are made that the biologically tagged
cells are destroyed in the same manner as those of
the subject and the potential life spans of the two
populations are approximately the same.

The N,Q values for the observed inagglutinable
cell counts are computed from equation 4 and
plotted on the vertical axis of Cartesian coordinates
against time in days after the beginning of the
induction phase on the horizontal axis. A smoothed
curve is drawn through the points and an en-
closing rectangle is constructed, as in Figure §,
with its base the horizontal axis from O to T, the
vertical axis from O to N, as the left side, a vertical
line at T as the right side, and a horizontal line
intersecting the vertical axis at N, as the top.
As in the steady state of random destruction, N,
(the count of inagglutinable cells immediately after
transfusion) is determined by the intersection of
the NoQ curve with the vertical axis. T is usu-
ally taken at 120 days.

Values for t are selected on the N,Q curve and
the construction indicated in Figure 8 is made for
each point. The area for Z is measured by run-
ning a planimeter around the figure containing the
sparse and dense stippling. The area of the rec-
tangle can be measured with the planimeter or
estimated from counting squares on the graph
paper. The values for Ry4 are computed using
equation 22. R, is usualy taken as 5 millions per
mm.* The observed values for the subject’s cell
counts are then compared with the computed val-
ues for Ryyq and significant discrepancies indicate
changes from the normal rate of cell release. The
method is applicable regardless of the shape of the
N,Q curve.

PHASE OF RECOVERY FROM RANDOM DESTRUCTION

In Figure 1, when the destructive mechanism
ceases to act, the level of the subject’s erythrocytes
rises from the steady state R’ to the normal level
R, in a transition curve labeled R,e.. The special
case has been assumed in which the cells of the
crops initially exposed to the destructive agent are
unaffected by the cessation of the destructive agent
and continue to be lost in random fashion, whereas
“new” cells survive in a normal manner.

It will be recalled that R’ was defined as the level
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F1c. 10. GrapHIC ESTIMATION OF THE ASCENDING
Curve oF ERYTHROCYTE COUNTS IN THE SUBJECT DURING
THE REcovery PHASE FRoM RANDOM DEesTrUCTION

The problem is to construct curve Rre. in Figure 9
when R, is known, when the observed cell level during
the steady state of random destruction has been meas-
ured in comparison with the expected level R’, when the
rate of cell release is normal during the recovery phase
regardless of the rate during random destruction, and the
manner of random destruction has been measured by the
disappearance curve of transfused inagglutinable cell
counts.

The N.Q values of the inagglutinable cell counts in the
present figure are computed with equation 4 and plotted
on the vertical axis of Cartesian coordinates against time
after cessation of the destructive mechanism on the
abscissa. T is taken as the normal life span of erythro-
cytes, usually 120 days. The intersection of the ordinate
by the curve determines No. A glance at R:.c in Figure 9
will show that it will exhibit a different rate of climb if
it begins at a level different than R’, which is defined as
the cell level expected in the steady state of random de-
struction when the rate of cell release is normal. If the
cell release rate has been abnormal, the observed cell level
will differ from R’. The fraction 'ﬂ,’ = R ____

o’ actual cell level
is then computed for the steady state of random destruc-

’
tion, and is then employed to obtain the expression Ny %o .

The value for the latter is plotted on the ordinate of the
graph and the top of the rectangle is formed by a hori-
zontal line through it. As in Figure 8, the densely stippled
area represents the “pre-existing” cells and the sparsely
stippled area the “new” cells. The entire stippled area
is designated as W and the unstippled area of the rectangle
is W’. Then at any time t

W
or Rm = Ro(m) .

The areas W and W’ may be measured with a planimeter.

Re W
Ro W4+ W
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of the subject’s cell counts resulting from random
destruction of cell crops which are produced by a
normal rate of cell release, This value is then com-
pared with the observed cell counts of the subject
to determine whether the cell release rate was in
fact normal. The contour of the curve R, de-
pends on whether it starts at R’ or the observed
cell level, if there is a discrepancy between the
two. In Figure 9 the construction is based on an
example in which the actual cell level of the subject
during the steady state of random destruction co-
incides with R’. If the number of cells in the crops
during the steady state of random destruction is
o’ rather than a,, the actual cell level will not coin-
cide with R’. These crops, being damaged initially
by the destructive mechanism, continue to be lost
at random after cessation of the destructive factor.
The new crops, however, are formed of normal
numbers and survive normally. The sums of the
numbers present in all crops at any time t during
the recovery phase determine the points on the
curve Ry, where t is measured from the beginning
of the recovery phase.

The number of “new” cells present at time t is
a,t, which is the sparsely stippled rectangle in
Figure 10. The “pre-existing” cells present at
time t have ages from t to T. The number of
cells in any one crop at time t is different from the
number in any other crop. As before, the addition
of increments of staggered crops is equivalent to
adding the cells present at successive time units in
a single curve. In the recovery phase the number
of “pre-existing” cells is the sum of the cells of all
crops of ages between t and T. If t” is a time be-
tween t and T, the size of a crop of age t” is
«Q(t"). Hence the number of the “pre-existing”
cells is proportional to the densely stippled area in
Figure 10 and the total number of all cells, both
“pre-existing” and “new,” is represented by the
entire stippled area W. As before, R, (which
equals a,t) is represented by the area W + W’ so
that

(28) Row = Ro(W——\_{Y—W-,>.

In the symbolism of calculus,
@) Re() = ast +o [ Q(t")dt”

- o[Ze+ [Townar].
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From equations 17 and 29

Rul®) * [Zi‘,’t+ j:r Q(t”)dt']
Ro = aoT ’

Multiplying numerator and denominator by N./a’

- 2 Net + j:' NoQ(t")dt”
(30) Re a
% N, T
a
(28) Ree(t) = R..(-———w ‘-:Yw)

Graphic Method for Estimating the Rate of Cell
Release

The problem is to estimate the expected erythro-
cyte counts of the subject during the recovery
phase from random destruction when the rate of
that destruction has been indicated by a series of
inagglutinable cell counts. In this case the data
must be secured from a tagged-cell transfusion
given before the onset of the recovery phase.

The N,Q values for the inagglutinable cell
counts are calculated with equation 4 and plotted
on the vertical axis of Cartesian coordinates
against time after the beginning of the recovery
phase in days on the abscissa. A smoothed curve
is drawn through the points. The graph is en-
closed in a rectangle similar to that in Figure 10,
using the horizontal axis from O to T (usually
120 days) for the base, the vertical axis of the
graph as the left side, and a vertical line at T for
the right side.

The horizontal line forming the top of the rec-

tangle is constructed at a height N,- 3 on the verti-

cal scale of the graph. N, is determined by the
intersection of the N,Q curve with the vertical
axis. The fraction is computed from equation 21.
For each value selected for t on the N,Q curve
the construction indicated in Figure 10 is made,
the entire stippled area is then measured with a
planimeter, obtaining the area W. The area of
the rectangle W + W' may be measured with the
planimeter or estimated by counting squares on
the graph paper. Each point for R, is then com-
puted using equation 28,

The curve produced by the points calculated for
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Ryec represents the expected erythrocyte counts
of the subject during the recovery phase from
random destruction, when the rate of cell release
during recovery is normal, when the subject’s cells
have been randomly destroyed in the same man-
ner as the tagged cells, when the cells of crops
initially damaged by the destructive mechanism
continue to be lost at random unaltered by the
cessation of the destructive mechanism, and when
the potential life spans of the subject’s and donor’s
cells are approximately equal. Comparison of the
observed values for the subject’s cell counts with
the R, curve reveals whether the rate of erythro-
cyte release was normal, accelerated, or diminished.
This method is applicable regardless of the shape
of the N,Q curve.

SUMMARY

Employing simultaneous counts of the subject’s
erythrocytes and the inagglutinable cell counts
from fresh normal transfused blood of heterologous
blood group, graphic methods have been presented
by which, with appropriate assumptions, the fol-
lowing can be estimated in the human subject: (a)
The rate of random destruction of transfused
erythrocytes; (b) the rate of numerical release of
erythrocytes to the circulation of the subject dur-
ing an apparently normal steady state; (c) the
rate of cell release in the subject during a steady
state in which release of cells attains an equilibrium
with a constant process of random destruction
plus loss by normal aging; (d) the rate of cell
release in a subject from the inception of a random
destructive mechanism until a steady state is at-
tained; () the rate of cell release in a subject dur-
ing recovery from a period of random destruction
of cells.

An explanation is offered for the constantly
low erythrocyte counts observed in some cases of
hemolytic anemia.
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