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In 1890, a country doctor in Germany
revolutionized our thinking of human
disease. The challenge of the day was to
identify specific bacterial agents that
were responsible for major disease out-
breaks. Robert Koch, after careful study
of disease epidemics from around the
world, forged the precepts that unequiv-
ocally establish causality for a single
infectious agent in the onset of a dis-
tinct disease (1). These “postulates” stat-
ed that: (a) the agent should be present
in every case of the disease; (b) the agent
must be isolated from the diseased host
and grown in vitro; (c) the disease must
be reproduced when the agent is deliv-
ered to a susceptible host; and (d) the
agent should be recovered from the dis-
eased animals. Koch’s postulates
formed the intellectual cornerstone for
the next century of advances in micro-
biology and ultimately led to the dis-
covery of the infectious basis for
anthrax, cholera, and tuberculosis. In
recognition of these seminal contribu-
tions, Robert A. Koch was awarded the
1905 Nobel Prize in Physiology and
Medicine. As we enter a new century, it
is becoming increasingly clear that the
power of Koch’s logic has extended
beyond the boundaries of bacterial dis-
eases. Although his views were based on
the inoculation of agents involved in
infectious diseases, the clarity of his
thinking continues to guide a new gen-
eration of scientists who are using
germline transmission in the mouse to
establish causality for specific genes and
pathways in the etiology of complex,
acquired human heart diseases.

In this regard, the current article by
Passier and colleagues is a valuable step
toward fulfilling Koch’s postulates,
underscoring the potential importance
of calcium signaling pathways in car-
diac hypertrophy and failure (2). Alter-
ations in calcium handling have long
been known to be closely associated
with the onset of cardiac hypertrophy
and failure. However, only recently has
there been substantial evidence to sup-

port the notion that these changes in
calcium might underlie pathways that
contribute to the progression of either
cardiac hypertrophy or failure. The dis-
covery of calcium-calmodulin-depend-
ent protein kinases (3) and the subse-
quent identification of their critical role
in neuronal cell signaling (4) laid the
groundwork for a critical examination
of the role of CaM kinase-dependent
signaling in in vitro cultured cardiac
myocyte models of hypertrophy (5). By
utilizing reporter genes that are activat-
ed during the hypertrophic response, it
was subsequently shown that the  iso-
form of CaM kinase I1, which is translo-
cated into the nucleus and is the pre-
dominant form of CaM kinase in the

which directly activates the protein via
phosphorylation (11). The discovery of
this CaM kinase pathway, which
extends from the cytoplasm to the
nucleus represents the major new find-
ing of this paper (2). This report joins a
large body of work that has previously
focused on the role of a calcineurin-
NFAT signaling pathway in the control
of the hypertrophic response, which
appears to be a parallel calcium-
dependent pathway (12, 13). Coupling
these data with other recent reports
that have identified a critical role for
calcium cycling defects in the progres-
sion of heart failure (14), evidence is
mounting that calcium can provoke
heart failure and hypertrophy (15).

In 1890, Koch defined postulates which formed the intellectual cornerstone

for the next century of advances in microbiology and ultimately led to the

discovery of the infectious basis for anthrax, cholera, and tuberculosis.

heart (6), was both necessary and suffi-
cient to activate features of hypertrophy
in vitro (7). By overexpressing a consti-
tutively active form of CaM kinase IV
specifically in the heart of transgenic
mice under the control of the well-char-
acterized O-myosin heavy chain pro-
moter (8), the study by Passier et al. now
shows for the first time to our knowl-
edge that the CaM kinase pathway is
sufficient to activate many features of
cardiac hypertrophy and failure in vivo
(2). Using a lacZ indicator mouse line
(9), the current study documents that
one of the critical downstream targets
in the CaM kinase pathway is the tran-
scription factor, MEF-2, which had pre-
viously been shown to play a pivotal
role in both skeletal and cardiac myoge-
nesis (10). Previous studies in other cell
types have documented that the nuclear
transcription factor CREB is a major
downstream target for CAM kinase,

This work is intriguing because of the
efforts taken to extend previous in vitro
observations to the in vivo context and
the ability to make a new connection
between cytosolic and nuclear signaling
molecules. In particular, the use of the
MEF-2 indicator line is ingenious (9), as
it should ultimately allow the activation
of this transcription factor to be moni-
tored in the mouse during the biome-
chanical stress of pressure overload (16).
As with all cutting-edge work, these
studies of CaM kinase activation and
cardiac hypertrophy suggest several
other subsequent lines of experimenta-
tion. Given that CaM kinase IV is
expressed at only trace levels in the heart
(4), it will be of immediate interest to
determine whether these observations
can be extended to the predominant car-
diac CaM kinase, the 0 isoform of CAM
kinase II, which is the predominant CaM
kinase IT activity in the heart (6). Recent-
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ly, two independent studies have shown
that increasing the peak intracellular cal-
cium transient can inhibit progression
of heart failure in both genetic and
acquired forms of cardiomyopathy (14,
17). In fact, ablating the endogenous
brake on calcium cycling, phospholam-
ban, can completely prevent the onset of
cardiac hypertrophy and block the
induction of atrial natriuretic factorin a
mouse model of dilated cardiomyopathy
(14). Because the decreased contractile
function seen in the CaM kinase trans-
genic lines most likely reflects a decrease
in the calcium transient, it will be impor-
tant to characterize the compartmental-
ization of the calcium signal in the
hypertrophied and failing heart. Doubly
transgenic animals have proved difficult
to generate from crosses between the
CaM kinase and calcineurin mouse lines,
most likely because the a-myosin heavy
chain promoter drives expression of
both gene products at high levels in the
fetal and the adult heart (18), leading to
early lethality. For this reason, it will be
critical to determine which aspects of the
observed phenotypes in the CaM kinase
transgenic line represent developmental
effect on myocyte survival or morpho-
genesis and which derive from postnatal
effects of the exogenous kinase. Finally,
and perhaps most importantly, it will
ultimately become necessary to deter-
mine whether the observed phenotypes
reflect a role of the endogenous CaM
kinase genes in the activation of biome-
chanical stress-induced hypertrophy, or
if they arise in part from nonspecific
effects of the 50- to 100-fold overexpres-
sion of a constitutively active protein.
With regard to this last point, there is
a diverse and rapidly growing list of
genes that can trigger features of hyper-
trophy and associated cardiomyopathy
after their cardiac-specific expression
(19-49) (Table 1), suggesting that multi-
ple pathways can activate this complex

Table 1
Transgenic models of cardiac hypertrophy”

adaptive response. As in the present
study, in most of these cases, there are
additional in vitro and in vivo data that
support their role in the pathogenesis of
hypertrophy. Accordingly, it is highly
likely that these effects reflect a direct or
indirect role for many of these genes in
the hypertrophic response, a view thatis
supported by the fact that each of the
cardiac phenotypes has distinct charac-
teristics at the molecular, morphologi-
cal, and physiological levels. However,
discriminating between end points that
arise strictly as a result of a signaling
event from those that reflect nonspecif-
ic cardiac injury, presumably due to the
disruption of the signaling stoichiome-
try in multiple pathways, could be a vex-
ing problem. Death of cardiac myocytes
may trigger not only postischemic heart
failure, but also a transition between
compensatory hypertrophy and dilated
cardiomyopathy (50). As Izumo et al.
(51) have shown, even the overexpression
of the reporter gene GFP causes car-
diotoxicity and cardiomyopathy when
placed under the control of the a-
myosin heavy chain promoter. For this
reason, the precise role of many of these
putative hypertrophy genes may have
been obscured by extraordinarily high
levels of transgene expression.

A case in point is the large body of
work, which has focused on the role of
the calcineurin-NFAT pathway in car-
diac hypertrophy (12, 13, 33, 52-54).
Compelling data in transgenic mice
(12), coupled with inhibition of the in
vivo pressure overload response by
cyclosporin, formed a cornerstone in
support of a primary role for calcineurin
as part of a final common pathway in
hypertrophy (13). However, the story
has grown increasingly complicated, as
a number of groups have shown that
cyclosporin fails to block the onset of
pressure overload hypertrophy (55-58).
The equivocal nature of the data raises

the possibility that a portion of the in
vivo effects observed in the calcineurin
transgenics might be due to the non-
specific effects of a massive increase in
cellular phosphatase levels. Supporting
this notion, it was recently documented
that NFAT3 knockout mice display a
completely normal response to pressure
overload hypertrophy, again raising the
issue as to the precise role of the cal-
cineurin pathway in the in vivo hyper-
trophic response (J.M. Leiden, personal
communication). Recently, Tsao et al.
reported a tenfold decrease in the level
of calcineurin expression in the failing
human heart (59). In addition, it has
been noted that cyclosporin has little
effect on in vivo cardiac hypertrophy in
humans that receive chronic therapy
during renal transplantation. However,
cyclosporin is not an ideal agent to
establish Koch’s postulates for any spe-
cific pathway, given its pleiotropic
effects. Of note, the calcineurin-NFAT
pathway has also been shown to medi-
ate skeletal muscle hypertrophy, indi-
cating that components of this pathway
may represent a conserved mechanism
for hypertrophic signaling in other stri-
ated muscle cells. (60, 61). Taken togeth-
er, it becomes apparent that although
calcineurin may contribute to an impor-
tant hypertrophic signaling pathway; its
precise role in cardiac hypertrophy
remains to be fully established. Defini-
tive proof of causality awaits the engi-
neering of a complete loss of calcineurin
function specifically in heart cells. A
similar caveat could apply to virtually all
of the genes listed in Table 1.

The use of the mouse in the study of
cardiac hypertrophy was initially envi-
sioned as a tool to connect in vivo car-
diac physiology with the role of specific
genes, i.e., a direct means to examine
whether single gene effects could acti-
vate all of the features of a hypertrophic
response that would ordinarily be seen

Ligands

Receptors

Channels/Transporters

G proteins

Kinases

Phosphatases

Transcriptional factors

Sarcomeric or cardiac structural proteins

Sarcoplasmic reticular proteins
Other

TNF-ai; MCP-1; NGF (32, 39, 41, 43, 49)

(-2 Adrenergic receptors; angiotensin |l type | receptor (22, 47)
KV4.2; GLUT-1 (ref. 48; W. Dillman, personal communication)

Ras; RhoA; Gi; Gs; Gq; Gh (19, 20, 21, 23, 26, 33)

PKCPB-2; P38; CaM Kinase IV (refs. 2, 44; Y. Wang, and K.R. Chien)

Calcineurin (12)

MYF5; NFAT; CREB; RXRa(; RARA (12, 24, 38, 42, 46)
a-Myosin heavy chain; a-tropomyosin; tropomodulin; Troponin T; myosin binding protein C;
myosin light chain-1; myosin light chain-2 (25, 28-31, 34, 35, 37, 40, 45)

Calsequestrin (27)
Enteroviral genome, GFP (36, 51)

APartial listing of mice which display cardiac hypertrophy after the cardiac-restricted overexpression of either wild-type or mutant forms of the proteins noted.
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in response to a complex stimulus, such
as hypertension (for review, see ref. 62).
The concept was modeled after the logic
of Koch, with the thought that single
gene effects might directly activate path-
ways that can specifically activate all of
the features of the hypertrophic
response. The past 5 years have seen an
exponential growth in our understand-
ing of this important adaptive response
of the heart. However, along the way, it
has become increasingly clear that
hypertrophy is a multigenic, integrative
response (15, 63). In addition, environ-
mental and genetic modifiers may be
more important in determining the phe-
notypic outcome than the effects of any
single gene. In short, to unravel this
complex physiological response of the
heart, we may now need to move beyond
Koch’s postulates, because heart disease
is often not initiated by a single stimulus
or pathway. The challenge remains to
identify the nodal points in the multiple
pathways that govern critical functions
of the cardiac muscle cell. Ultimately, it
will become imperative to examine the
consequences of the specific loss of func-
tion of these nodal genes in the setting
of authentic, complex environmental
stimuli that lead to hypertrophy: pres-
sure overload, hypertension, postis-
chemic injury, and hypoxia, among oth-
ers. Refined single-cell physiological end
points could be extremely useful, as we
need to move beyond effects on single
genes. Precision engineering of hypo-
morphic alleles, cell-type specific muta-
tions, inducible mutagenesis, and genet-
ic complementation should prove
valuable in the next leg of the journey.
There is an old Chinese saying that “a
journey of a thousand miles begins with
one step.” For the next generation of car-
diovascular physicians and scientists,
half the fun will be getting there.
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