A COMPARISON OF THE CREATININE AND UREA CLEAR-ANCE TESTS OF KIDNEY FUNCTION

By J. M. HAYMAN, JR., J. A. HALSTED AND L. E. SEYLER

(From the H. K. Cushing Laboratory of Experimental Medicine in the Department of Medicine of Western Reserve University, and the Medical Service of Lakeside Hospital, Cleveland)

(Received for publication May 1, 1933)

The urea clearance test developed by Möller, McIntosh and Van Slyke (1) has one disadvantage, namely, that maximum and standard clearances are only comparable by reference to the average normal value for each or by multiplying the standard clearance by a constant. In addition the standard clearance, involving the square root of the urine volume, is difficult to interpret. The creatinine clearance test, developed by Rehberg (2), is not subject to these objections, since the excretion of creatinine is independent of urine volume. It therefore seemed worth while to compare the creatinine and urea clearances as a test of renal function, to determine if there was sufficient practical advantage in the creatinine test to compensate for the added technical difficulties.

Rehberg presented evidence that led him to believe that the creatinine clearance represented the volume of glomerular filtrate, and on this assumption calculated the quantities of urea and chloride reabsorbed. Rehberg's conception has been accepted by Wyschegorodzewa (3), Bergwall (4), and others (5, 6); questioned by Cope (7) and Ekehorn (8); and denied by Shannon, Jolliffe and Smith (9). The evidence at present available does not, in our opinion, justify unreservedly accepting the creatinine clearance as equal to the volume of glomerular filtrate, and while this lessens the value of the test as a tool in the study of renal physiology, it need not detract from its usefulness as a practical test of kidney function.

METHODS

Hospital patients were kept in bed for the period of the test. Dispensary patients and normal subjects were allowed to sit in a chair or engage in light laboratory work. Some tests were made after fourteen hours' fast, the majority after a light breakfast which MacKay (10) found had no effect on the urea clearance. Three to five grams of creatinine were given by mouth an hour to one and one-half hours before the beginning of the test. At the beginning of the test, the bladder was emptied as completely as possible and a sample of venous blood obtained. Approximately an hour later, but timed to the nearest minute, the bladder was again emptied as completely as possible and a second sample of blood obtained. If there was any doubt whether the subject could empty the bladder, he was catheterized. All blood analyses were made on serum.

Urea nitrogen in urine and serum was estimated by the gasometric method of Van Slyke (11); in a few instances by Van Slyke and Cullen's (12) method. All analyses were made in duplicate. Creatinine in urine and serum was estimated by Rehberg's (13) modification of Folin's method, using a colorimeter with Bürker optical system.

The ingestion of three to five grams of creatinine increases the plasma concentration to 5 to 10 mgm. per cent. This decreases the effect of substances other than creatinine in plasma which give the Jaffe reaction, as well as making the estimation more certain. Since Behre and Benedict (14) and Gaebler (15) have doubted the existence of creatinine in normal blood, and since Gaebler could recover only a relatively small fraction of the creatinine added to blood, it was felt that the creatinine analyses had to be examined before any reliance could be placed on the calculation of creatinine clearance by the formula UV/B = C. By the method used in these experiments the average recovery of creatinine added to serum in amounts equivalent to 0.5 to 15.0 mgm. per 100 cc. was 93.5 per cent in 15 experiments, the extremes being 80 and 124 per cent. Table I shows

TABLE I

Comparison of creatinine clearances calculated from total chromogenic substances and from ingested creatinine only

	Before in	gestion	After in	gestion	C	tinine
Name	Serum "creatinine"	Creatinine excreted	Average serum creatinine	Creatinine excreted		ance †
	mgm. per cent	mgm. per minute	mgm. per cent	mgm. per minute	A	В
J. M. H	1.27*	1.42*	9.63 8.31	12.72 10.30	132 124	134 126
			12.22	12.50	102	101
White	0.95	1.37	6.16	10.05	163	166
Wilson	1.08	1.59	8.28	8.08	106	100
Letcher	1.01	.89	9.20	11.05	120	124

* Average of 4 determinations.

+A—clearance calculated from total chromogenic substance in serum and urine.

B—clearance calculated from ingested creatinine only, subtracting value of chromogenic substances normally present in serum and average rate of excretion of creatinine before ingestion.

that there is no difference in the clearance calculated on total chromogenic substances in serum and urine after ingestion of creatinine and in the clearance calculated on ingested creatinine only. Gaebler and Keltch (16) have shown that all the chromogenic material adsorbed on Lloyd's reagent and released again is indistinguishable from creatinine. Therefore, a clearance calculated on the material released from Lloyd's reagent should be higher than that calculated on total chromogenic substances when no creatinine has been fed, since other substances account for a considerable fraction of the value obtained for "creatinine" in normal serum. After ingestion of creatinine, the clearances calculated before and after the use of Lloyd's reagent should show much less difference. Table II shows that

	Experimental number and	Urine	Та	otal "creat	inine"	Rele	eased from	Lloyd's
	condition	volume	Serum	Urine	Clearance	Serum	Urine	Clearance
		cc. per minute	mgm. per ceni	mgm. per ceni	cc. per minute	mgm. per cent	mgm. per cent	cc. per minute
1.	No	6.84	1.01	131	89	.84	136	111
2.	creatinine	7.07	1.30	20	109	.96	18	133
3.	ingested	7.75	1.32	18	106	.87	14	125
4.	Creatinine	7.72	9.63	165	132	9.03	159	136
5.	ingested	1.95	12.22	642	102	10.99	600	106
б.	-	9.35	6.16	108	164	6.02	101	157

TABLE II Comparison of creatinine clearances calculated from total chromogenic substances and from material released from Lloyd's reagent with and without ingestion of creatinine

this is the case. These experiments led us to believe that with serum concentrations of creatinine above 5 mgm. per cent, the creatinine clearance could be calculated on total chromogenic substance present in serum and urine without significant error.

In order to estimate the range of creatinine clearance in normal individuals under conditions of hospital and office practice, 59 clearances on 59 apparently healthy individuals were tabulated. In 45 of these, only a single test was made. In 14, from 2 to 21 clearances were determined. For these, the first clearance determined was tabulated. The range in these 59 observations was from 87 to 232 cc. per minute, the mean 144 cc. per minute with a standard deviation of 36 cc. When repeated tests are made of the same individual, there is a similar wide dispersion, but the limits for all clearances which we have obtained from normal individuals are only slightly wider. Nor apparently does any normal individual tend to have a constantly high or low clearance.

For this reason, it seemed proper to include all our observations (130) of normal individuals where no recognized unusual factor, such as administration of a drug or exercise, was present to show the normal chance distribution of clearances. If this be done, the range is from 70 to 238 cc. per minute, the mean 148 cc. per minute with a standard deviation of 34 cc. A frequency polygram of these observations shows a decided skewness, but not sufficient to make unreasonable the belief that the chances of a single

clearance of a normal adult falling between 80 and 216 are about 24:1. (Fig. 1).

McIntosh, Möller and Van Slyke (17) found that more constant normal values for urea clearance were obtained if a correction was made for surface area. This seems reasonable for Taylor, Drury and Addis (18) were able to show that kidney weights in rabbits varied in proportion to surface area rather than to body weight. To avoid an error greater than ± 5 per cent in using the formula UV/B = C, body size can be neglected only in adults between 164 and 176 cm. in height. We have corrected the creatinine clearance values by the factor (1.75/A) where A is surface area

FIG. 1. FREQUENCY POLYGRAM OF 130 CREATININE CLEARANCE VALUES ON 59 NORMAL ADULTS

The solid area includes only the first observation made on each person.

in square meters. This amounted to more than 10 per cent in 5 instances. The average of the corrected clearances is 145 ± 34 cc. per minute, and the dispersion practically the same as for the uncorrected values. Since other unknown factors produce a much greater variation in clearances done on the same individual at different times than the amount of the correction for surface area, we feel that this correction is unnecessary in the case of adults except possibly for those of extreme heights. We have not applied the correction in the patients studied.

From our experience with normal subjects and patients suffering from various diseases, we have come to believe that creatinine clearances below 60 cc. per minute (41 per cent of average normal) are definitely abnormal, and those between 60 and 80 cc. per minute (41 to 54 per cent average normal) doubtful but significant if a repeated test is in the same range.

This is a lower normal limit than Holten and Rehberg (19) use. They found the clearance always above 100 cc. per minute in normal individuals when tested between 10 and 11 a.m. But in 89 clearances reported by Rehberg of himself where experimental conditions were more varied regarding posture and fluid intake, the clearance was 9 times between 80 and 100 cc. per minute, and twice between 60 and 80 cc. per minute, so that a patient cannot be said to have diminished renal function on the basis of a single creatinine clearance test between 60 and 100 cc. per minute.

The maximum urea clearance in 56 observations of 25 normal individuals ranged from 38 to 112 cc. per minute, with an average of 74.68 cc. per minute, and a standard deviation of 17.57 cc., identical with the average of 75 cc. per minute found by Möller, McIntosh and Van Slyke. The range in our subjects is somewhat greater than the extremes of 52.2 and 103.8 cc. per minute which they found. The mean standard urea clearance in 39 observations of 26 persons was 51 cc. per minute with a standard deviation of 10.11 cc. The range was from 30 to 67 cc. per minute. This is the same range found by Möller, McIntosh and Van Slyke (28.3 to 69.3 cc. per minute) while the mean is but slightly lower. Thus in the case of normal individuals creatinine and urea clearances have about the same degree of dispersion. The creatinine clearance is always numerically greater than the maximum urea clearance, although when the standard urea clearance is calculated using the square root of urine volume, the numerical value may be greater for urea than for creatinine clearance. In estimating reduction of kidney function we have used 148 cc. per minute as the average normal creatinine clearance, and 75 cc, and 54 cc, per minute as the average normal maximum and standard urea clearances.

A comparison of creatinine and urea clearances has been made 116 times on 93 patients with Bright's disease and certain other conditions (Tables III, IV and V). We have followed Addis's classification (20) of Bright's disease but have used the term acute instead of initial hemorrhagic Bright's disease. Patients with degenerative Bright's disease, of whom relatively few were examined, have been grouped with the miscellaneous cases in Table V. We have not had the opportunity of examining any patient in whom the diagnosis of "cryptic" degenerative Bright's disease (pure lipoid nephrosis) seemed proper. Cases 107-624 and 151-532 presented a typical picture at the time of some examinations, but had had hematuria some time previously. Both clearance tests frequently show marked reduction in kidney function before there is any elevation of blood urea nitrogen, decrease in two hour phenolsulphonphthalein output, or fixation of specific gravity. This was shown for the urea clearance by Van Slyke and his associates (21) and for creatinine by Holten and Rehberg (19). We have not found the decrease more constant or more marked in one test than the other. Just as in normal persons, the creatinine clearance is always numerically greater than the maximum urea clearance; the

_ д																							
Date of death																							
Per cent of	normal		37	2	56	54	112	26	47	59	49	2	45	49	28	58	139	20	8	19	52	42	2
Creatinine		cc. per minute	55	64	83	8	166	39	8	8	73	95	8	73	41	86	5 06	8	80	28	11	62	95
Per cent of	normal		44	68	61	44	123	24	41	49	46	58	41	37	29	31	83	17	54	19	45	35	93
Urea clearance		cc. per minute	32.8	51.0	32.8*	33.3	92.5	12.7*	21.9*	36.9	34.2	43.2	22.3*	27.8	21.4	16.6*	62.2	9.1*	29.1*	14.6	33.4	18.8*	50.0*
Blood	nitrogen	mgm. Per cent	16.5	33.6	10.0	25.3	9.8	34.9	14.0	18.0	9.7	21.7	34.4	9.2	18.2	26.6	8.5	79.8	24.2	28.8	17.6	21.1	14.2
Phenol- Blood sulphon- urea	phthalein	per cent in 2 hours	80			30		20							80	30		67	48	20	50	65	20
Blood	hreent	mm. Hg	110/70	140/100	135/80	140/80	115/80	190/120	140/90	120/80					180/100	•••		115/45	140/100	115/80	160/110	105/70	
Stage of disease			Acute 110/70	Acute	Acute	Acute	Acute	Acute	Latent	Latent	Latent	Latent	Latent	Latent	Chronic active								
Date					26, 1933	26, 1932		25,	27,	5								25,	21,	×,	57,		• -
Ŭ			May	January	January	October	February	June	August	December	January	January	January	January	January	April	January	April	November	October	November	November	December
Age		years	14	33	20	55	27	42							38	52	15		38	45	24	32	
Ser			(II	Σ	Σ	X	ſĿ,	Z							Σ	Z	X		ы	M	ы	Σ	
Hospital	TOTINI I		146-625	146-212	136-555	148-341	150-822	139-831							150-571	146-216	107-624		149-975	139-722	149-916	150-097	

TABLE III Creatinine and urea clearances in patients with hemorrhagic Bright's disease

866

CREATININE AND UREA CLEARANCE

	Age Da	Date	Stage of disease	Blood pressure	sulphon- phood phthalein nitrogen		Urea clearance	rer cent of normal	Creatinine clearance	Per cent of normal	Date of death	death
years	5			mm. Hg	per cent in 2 hours	mgm. per cent	cc. per minute		cc. per minute			
I51-107 F 35	February	10, 1933	Chronic active 120/70	120/70	58	16.0	44.0*	82	79	53		
	October		Chronic active 130/80	130/80	8	7.5	67.0	89	88	09		
	November	r 2, 1931	Chronic active 140/100	140/100	50	11.3	34.9	47	47	32		
[42–123 M 51	September	28,	Chronic active 155/85	155/85	8	19.0	24.4	33	20	47		
44-018 F 28	December		Chronic active 165/90	165/90	65	14.9	24.6*	46	53	36		
			Chronic active 185/110	185/110	4	14.0	18.2*	34	47	32		
	October		Chronic active 205/135	205/135	10	30.3	13.8*	26	29	20		
	January		Terminal	190/130	10	28.6	14.9	20	20	14	March	1, 1933
86-642 F 31	October		Chronic active	110/80	25	24.0	11.9	16	28	19		
	January		Chronic active			24.7	9.3	12	26	18		
145-429 M 43	March	1, 1932	Latent	135/80	20	14.0	101.0	135	149	101		
		ò	Latent	160/100		8.9	67.0	81	126	85		
Z		20, 20	Terminal	160/110		12.4	21.5*	40	46	31	November 28, 1932	28, 1932
M			Terminal	180/110	ŝ	111.0	3.9*	7	6	ŝ	May	6, 1932
	March	•••	Terminal	140/70		188.0	0.6*	-	0.5	0.34	April	1, 1932
_	October	• •	Terminal	150/110		52.4	3.8*	7	8.0	5.0	February	21, 1933
íц		3, 1933	Terminal	260/150	10	70.0	5.2*	10	12.0	~	March	4, 1933
	July	26, 1932	Terminal	110/60	v	119.0	*0.0	2	0.4	0.3	July	28, 1932

TABLE III—(Continued)

J. M. HAYMAN, JR., J. A. HALSTED AND L. E. SEYLER

Date of death				e 28, 1932		August 27, 1932				December 15, 1932									
				June	1	Aug				Dec									
Per cent of normal		78	75	6 6	6 6	32	62	55	53	49	48	44	40	40	37	37	S	8	35
Creatinine clearance	cc. per minute	116	111	98	98	47	91	81	78	73	11	65	59	59	55	55	7	12	52
Per cent of normal		62	11	46	59	20	83	20	97	46	39	64	25	30	29	75	9	6	19
Urea clearance	cc. per minute	46.8	41.7*	34.8	31.8*	26.8*	44.8*	37.8*	72.6	34.6	29.4	34.5*	13.7*	16.4*	15.8*	40.4*	3.2*	5.1*	10.3*
Blood urea nitrogen	mgm. þer cent	13.5	13.2	14.2	16.9	31.9	15.4	20.0	22.5	29.1	15.2	20.1	16.5	19.6	23.1	20.5	36.4	47.0	20.3
Phenol- sulphon- phthalein	per cent in 2 hours		30	20	52	25		55	56	4	55	30	4	20		40	10	10	55
Blood pressure	mm. Hg	220/140	260/160	150/110	200/130	230/170	140/80	200/100	198/130	240/150	300/165	275/154	235/155	200/100	150/90	170/95	180/100	165/90	190/125
Date		¢	rry 19,	Ó	ŗ.	July 29, 1932	53,	17,	18,	17,		12,			28,	6	14,	10	16,
		April	Janus	October	April	July	Nove	January	January	May	Nove	January	Nove	Nove	June	January	Octof	Janua	July
Age	years	41	41	54	29		8	62	28	38	30	44	55	56	43	49			41
Ser		ίH,	Z	Σ	Σ		íц	Z	í۳,	(II,	ĹΤ.	۲щ.	۲L)	ы	Σ	Ē			Z
Hospital number		0-348-091	105-700	126-997	145-997		149-734	0-339-644	150-795	143-350	87-720	135-951	149-462	150-053	143-048	138-277			121-988

TABLE IV Creatinine and urea clearances in patients with arteriosclerotic Bright's disease

CREATININE AND UREA CLEARANCE

Hospital	5	Acre	Date	Blood	Phenol-	Blood	Urea	Per cent	Creatinine	Per cent	Date of death	deset.
number	3			pressure	phthalein	nitrogen	clearance	normal	clearance	normal	המוכ חו	תכפרוו
		years		mm. Hg	per cent in 2 hours	mgm. þer cent	cc. per minute		cc. per minute			
151-530	X	52	March 6, 1933	220/30	20		23.4*	43	45	30		
141-842	Σ	56	28,	260/140	25	29.8	19.2*	36	45	30		
125-983	Z	52	mber 2,	170/120	40	17.4	28.1*	52	40	27		
144-079	<u>ل</u> تر	38	11, 1	225/145	33	35.0	11.2*	21	35	24	November 9, 1932	9, 1932
150-478	Z	39	January 9, 1933	220/135	25	40.6	15.4*	29	34	23		
			14,	245/150	15	53.5	8.1*	15	13	6		
142-341	ы	38	3	170/116	S	18.0	25.6	34	32	22		
142-324	Σ	55	S,	240/140	S	74.1	29.2*	54	32	22	September 27, 1931	27, 1931
146-857	Σ	30	Ś	220/160	10	109.0	0.7*	1	11	7	•	
			July 23, 1932			49.7	18.6	25	27	18	August	
148-705	ы	48	Ξ,	245/150	18	49.4	16.5	22	21	14	December	30, 1932
149-634	Σ	44	\$	200/160	S	105.7	12.9	17	18	12	November	20,
149-237	Σ	58	October 5, 1932	260/130	10	57.4	5.2*	10	15	10	December	
125-448	ы	43	er 24,	150/90	10	76.3	17.5*	32	11	7		
			October 13, 1932	160/110		46.9	5.0*	0	7	ŝ		
150-929	14	8		170/80		156.0	3.8*	7	7	ŝ	January	
134-806	щ	32	July 22, 1931	230/140	ŝ	61.5	4.1*	∞	7	ŝ	August	
144-535	щ	45	-	230/110		131.5	1.7*	ę	4	e S	January	
146-471	Z	56	61	160/100		232.0	0.3*	0.6	3	7	May	
91504	ц	43	6	250/170	n	118.0	3.6*	7.0	3	7	June	
147-168	ц	4	June 17, 1932	230/110	ŝ	88.9	1.7*	3.0	2	1.4	June	29, 1932
141-832	Σ	47	31, 3	235/130		163.0	0.2*	0.4	0.6	0.4	August	
] •].		_								

TABLE IV (Continued)

* Standard clearances.

J. M. HAYMAN, JR., J. A. HALSTED AND L. E. SEYLER

Hospital number	S.	Age	Date	ų	Diagnosis	Blood pressure	Phenol- sulphon- phtha- lein	Blood urea nitro- gen	Urea clear- ance	Per cent of normal	Creat- inine clear- ance	Per cent of normal	Date of death	f death
		years				mm. Hg	per cent in 2 hours	mgm. Þer cent	cc. per minute		cc. þer minute			
150-775	í۲.	23	January	12, 1932	Degenerative Bright's disease and eclamosia	155/100	55	12.5	23.7*	44	56	38		
			March	20, 1933	Degenerative Bright's disease			13.7	31.3	42	11	52		
151-532	X	41	March	6, 1933	Degenerative Bright's disease	150/95	42	26.1	29.6	39	41	28		
151-057	۲.	21	February	1, 1933	Degenerative Bright's disease	165/120		60.4	17.5*	32	21	14		
			April	3, 1933	and eclampsia Degenerative	158/100	50	13.4	25.2*	47	61	41		
149-975	ы	38	December 29, 1932	29, 1932	Dingnus unsease Diabetes and	150/90	35	27.3	33.0*	61	131	68		
149-793	M	53	January	21, 1933	diterioscierosis Diabetes and	150/100	26	32.2	18.1	24	32	22		
0-320-	X	43	January	14, 1933	Diabetes and	240/140		19.7	19.6*	36	51	34		
131-380	ц	49	January	27, 1932	Diabetes and	230/130	40	9.1	42.0*	78	65	44		
136-525	W	28	October August	25, 1930 15, 1932	Diabetes insipidus Diabetes insipidus	130/85		11.0 15.0	38.5 43.5	51 58	10 4 79	70 53	August	27, 1932

TABLE V

Creatinine and urea clearances in patients with degenerative Bright's disease and certain other diseases

CREATININE AND UREA CLEARANCE

leath			30, 1932		21, 1932	9, 1932	30, 1932		14, 1931	27, 1931	18, 1932	13, 1933	18, 1931	18, 1931	24, 1932	18, 1932
Date of death			November 30, 1932		June	May	November 30, 1932		September 14, 1931	ber		January	er	December	August	
Per cent of normal		80	30	50	19	55	14	59	98	105	156	26	16	3	9	1.4
Creat- inine clear- ance	cc. per minute	119	44	74	28	81	20	88	145	155	231	38	23	S	6	2
Per cent of normal		137	. 22	39	27	53	69	85	56	115	141	15	13	S	13	1.5
Urea clear- ance	cc. per minute	103.0	11.8*	21.1*	14.5*	28.7*	37.0*	63.5	30.0*	62.0*	76.0*	8.3*	9.45	3.5	7.0*	0.8*
Blood urea nitro- gen	mgm. per cent	8.1	56.4	15.0	6.5	16.9	7.0	19.2	41.4	15.0	19.5	65.0	183.0	137.0	73.5	175.0
Phenol- sulphon- phtha- lein	per cent in 2 hours	80				10								ŝ	20	Trace
Blood pressure	mm. Hg	160/110	125/70	110/70	170/90	110/55	<u>90/06</u>	110/65	125/75	130/70	95/60	110/80		125/80	108/78	130/76
Diagnosis		Essential Hyper-	tension Carcinoma of stomach and	arteriosclerosis Carcinoma of	bronchus Carcinoma of	stomach Carcinoma of	prostate Carcinoma of pan-	creas and jaundice Pneumonia	Pneumonia	Pneumonia	Pneumonia	Pneumonia	Pneumonia	Pyelonephritis	Pyelonephritis	Pyelonephritis
Date		August 22, 1932	November 28, 1932	December 5, 1932	June 10, 1932	May 6, 1932	November 25, 1932	April 7, 1932	mber 1	September 25, 1931	11,	January 12, 1933	F	December 8, 1931		March 13, 1933
Age	years	23	67	64	99	75	52	50	26	36	27	51	36	71	34	20
Şex		M	ы	М	ц	M	н	Z	Σ	Σ	Σ	Σ	Σ	Σ	۲щ	ы
Hospital number		133-845	149-816	149-535	122-258	146-484	149-077	146-070	142-587	142-828	145-644	150-738	143-756	144-053	147-549	85-756

TABLE V (Continued)

J. M. HAYMAN, JR., J. A. HALSTED AND L. E. SEYLER

	Date of death		January 28, 1932													September 8, 1931		
	Per cent of normal		1.4	0.06	106.0	46	YY	04	14	30	R	<u></u>	39		16	2		
	Creat- inine clear- ance	cc. per minute	7	147	157	68	07	80	21		**	98	57		24	3		
	Per cent of normal		ŝ	91	59	50	5	ì	16	36	2	83	73		32	ŝ		
	Urea clear- ance	cc. per minute	1.4*		31.6*			42.0	12.1	2 7 2		44.8*	39.4*		24.3	2.5*		
	Blood urea nitro- gen	mgm. per cent	217.0	7.8	11.1	17.6	1 4 5	C.01	57.2	27 2	0.20	10.8	14.5		30.6	88.7		
•	Phenol- sulphon- phtha- lein	per cent in 2 hours	Trace 217.0	80	43	85			40						15	Trace		
	Blood pressure	mm. Hg	130/75	180/140	130/85	140/80			120/90			115/55	110/70		160/90	105/60		
	Diagnosis		Bismuth poisoning	Arteriosclerosis	Arteriosclerosis	Hypertrophied	prostate	Hypertrophied	Hypertrophied	prostate	nypertroputed	Pernicious anemia	Cirrhosis of liver	and jaundice	Subacute endo-	Streptococcic sept-	icemia and acute	tis
	ę		18, 1932	30, 1931	13, 1932	21, 1933	11 1022	14, 1933	21, 1933	E 1033	0, 1900	14, 1932	14, 1933		15, 1933	26, 1931		
	Date		January 18, 1932	November 30, 1931	May	March		April	March	1 V	Inde	April	February		March	August)	
	Age	years	20	39	34	76			65			59	38		20	19	_	
	S.		X		۲L,				Z				ы		Z	н		
	Hospital number		144-740	143-846	125-080	151-642			151-583			146-177	150-874		141–512	141-891		

TABLE V (Continued)

872

CREATININE AND UREA CLEARANCE

* Standard clearances.

standard urea clearance, however, may have a greater numerical value than the creatinine clearance determined at the same time, since the concentration ratio is multiplied by the square root of urine volume in the former and by the volume in the latter.

A direct comparison of the two clearance tests is shown in Figure 2 in which the results of each test are plotted as percentage of average normal.

FIG. 2. COMPARISON OF CREATININE AND UREA CLEARANCE TESTS IN PAtients with Bright's Disease and Certain Other Conditions

Points above the line indicate instances in which the urea clearance showed less reduction than creatinine; those below, instances in which the percentage reduction in urea clearance was greater. In patients with creatinine clearances below 10 per cent of average normal, there is not much difference in the degree of reduction of the two tests. In 82 creatinine clearances between 10 and 80 per cent of average normal, the urea clearance was reduced to a greater degree in 32, while in 50 it was not reduced to the same extent. These differences are of questionable significance when the

wide range of normal variation in both tests is remembered. The most that can be said in favor of the creatinine test is that it may indicate a greater decrease in function more frequently than the urea clearance, but not with enough regularity to make up for the greater technical difficulty of the test. Nor have we been able to find any group of patients or any pathological condition in which the results of one test are consistently different from those of the other.

Since the creatinine test is more laborious and expensive, involving the ingestion of creatinine and the analysis of two blood samples, we do not believe it has any advantage in the routine estimation of the degree of impairment of kidney function in the clinic. If it can be satisfactorily shown that the creatinine clearance does approximate the volume of glomerular filtrate, then a comparison of the two tests, run simultaneously, will permit a much more intimate analysis of the parts played by variations in the volume of filtrate and degree of back diffusion in health and disease (19).

CONCLUSIONS

The creatinine and urea clearance tests have been compared in normal persons and in patients with Bright's disease. The mean creatinine clearance in 130 observations of 59 normal subjects was 148 cc. per minute. The variability of the two tests from the mean normal was approximately the same in our hands.

In patients with Bright's disease the creatinine and urea clearance tests are generally equally reduced in relation to the average normal. We were unable to demonstrate any practical advantage in the creatinine test to compensate for its greater technical difficulty.

BIBLIOGRAPHY

- Möller, E., McIntosh, J. F., and Van Slyke, D. D., J. Clin. Invest., 1928, vi, 427. Studies of Urea Excretion. II. Relationship Between Urine Volume and the Rate of Urea Excretion by Normal Adults.
- Rehberg, P. B., Biochem. J., 1926, xx, 447. Studies on Kidney Function. I. The Rate of Filtration and Reabsorption in the Human Kidney.
- 3. Wyschegorodzewa, V. D., Ztschr. f. d. ges. exper. Med., 1931, lxxv, 72. Zur Bestimmung der Nierenfunktion auf Grund der modernen Filtrations-Reabsorptionstheorie der Harnabsonderung.
- 4. Bergwall, A., Klin. Wchnschr., 1932, xi, 554. Glomerulusfiltratmengenbestimmungen bei Nierenkranken.
- 5. Hemingway, A., J. Physiol., 1933, lxxvii, 13P. The Rate of Glomerular Filtration in the Perfused Kidney.
- 6. Ellis, L. B., and Weiss, S., J. A. M. A., 1933, c, 875. Renal Function in Arterial Hypertension.
- 7. Cope, C. L., Quart. J. Med., 1931, xxiv, 567. The Excretion of Creatinine by the Human Kidney in Health and in Nephritis.
- 8. Ekehorn, G., Acta med. Scandinav., 1931, Supplement xxxvi. On the Principles of Renal Function.

- Shannon, J. A., Jolliffe, N., and Smith, H. W., Am. J. Physiol., 1932, cii, 534. The Excretion of Urine in the Dog. VI. The Filtration and Secretion of Exogenous Creatinine.
- MacKay, E. M., J. Clin. Invest., 1929, vi, 505. Studies of Urea Excretion. V. The Diurnal Variation of Urea Excretion in Normal Individuals and Patients with Bright's Disease.
- 11. Van Slyke, D. D., J. Biol. Chem., 1927, lxxiii, 695. Determination of Urea by Gasometric Measurement of the Carbon Dioxide Formed by the Action of Urease.
- 12. Van Slyke, D. D., and Cullen, G. E., J. Biol. Chem., 1916, xxiv, 117. The Determination of Urea by the Urease Method.
- Rehberg, P. B., Zentralbl. f. inn. Med., 1929, i, 367. Über die Bestimmung der Menge des Glomerulusfiltrats mittels Kreatinin als Nierenfunktionsprüfung, nebst einigen Bemerkungen über die Theorien der Harnbereitung.
- Behre, J. A., and Benedict, S. R., J. Biol. Chem., 1922, lii, 11. Studies in Creatine and Creatinine Metabolism. IV. On the Question of the Occurrence of Creatinine and Creatine in Blood.
- 15. Gaebler, O. H., J. Biol. Chem., 1930, lxxxix, 451. Further Studies of Blood Creatinine.
- Gaebler, O. H., and Keltch, A. K., J. Biol. Chem., 1928, lxxvi, 337. On the Nature of Blood Creatinine.
- McIntosh, J. F., Möller, E., and Van Slyke, D. D., J. Clin. Invest., 1928, vi, 467. Studies of Urea Excretion. III. The Influence of Body Size on Urea Output.
- Taylor, F. B., Drury, D. R., and Addis, T., Am. J. Physiol., 1923, lxv, 55. The Regulation of Renal Activity. VIII. The Relation Between the Rate of Urea Excretion and the Size of the Kidneys.
- 19. Holten, C., and Rehberg, P. B., Acta med. Scandinav., 1931, lxxiv, 479. Studies on the Pathological Function of the Kidneys in Renal Disease, Especially Bright's Disease. I.
- Addis, T., J. A. M. A., 1925, lxxxv, 163. A Clinical Classification of Bright's Disease.
- Van Slyke, D. D., McIntosh, J. F., Möller, E., Hannon, R. R., and Johnston, C., J. Clin. Invest., 1930, viii, 357. Studies of Urea Excretion. VI. Comparison of the Blood Urea Clearance with Certain Other Measures of Renal Function.