Obesity alters gut microbial ecology

RE Ley, F Bäckhed, P Turnbaugh… - Proceedings of the …, 2005 - National Acad Sciences
Proceedings of the national academy of sciences, 2005National Acad Sciences
We have analyzed 5,088 bacterial 16S rRNA gene sequences from the distal intestinal
(cecal) microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and
their ob/+ mothers, all fed the same polysaccharide-rich diet. Although the majority of mouse
gut species are unique, the mouse and human microbiota (s) are similar at the division
(superkingdom) level, with Firmicutes and Bacteroidetes dominating. Microbial-community
composition is inherited from mothers. However, compared with lean mice and regardless of …
We have analyzed 5,088 bacterial 16S rRNA gene sequences from the distal intestinal (cecal) microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet. Although the majority of mouse gut species are unique, the mouse and human microbiota(s) are similar at the division (superkingdom) level, with Firmicutes and Bacteroidetes dominating. Microbial-community composition is inherited from mothers. However, compared with lean mice and regardless of kinship, ob/ob animals have a 50% reduction in the abundance of Bacteroidetes and a proportional increase in Firmicutes. These changes, which are division-wide, indicate that, in this model, obesity affects the diversity of the gut microbiota and suggest that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
National Acad Sciences