Evidence for the role of neurogenic inflammation components in trypsin‐elicited scratching behaviour in mice

R Costa, DM Marotta, MN Manjavachi… - British journal of …, 2008 - Wiley Online Library
R Costa, DM Marotta, MN Manjavachi, ES Fernandes, JF Lima‐Garcia, AF Paszcuk…
British journal of pharmacology, 2008Wiley Online Library
Background and purpose: We investigated the mechanisms underlying the pruritogenic
response induced by trypsin in mice, to assess the relevance of neurogenic inflammation
components in this response. Experimental approach: Itching was induced by an
intradermal injection of trypsin in the mouse neck. The animals were observed for 40 min
and their scratching behaviour was quantified. Key results: Trypsin‐induced itching was
blocked by the lima bean trypsin inhibitor, the selective proteinase‐activated receptor‐2 …
Background and purpose
We investigated the mechanisms underlying the pruritogenic response induced by trypsin in mice, to assess the relevance of neurogenic inflammation components in this response.
Experimental approach
Itching was induced by an intradermal injection of trypsin in the mouse neck. The animals were observed for 40 min and their scratching behaviour was quantified.
Key results
Trypsin‐induced itching was blocked by the lima bean trypsin inhibitor, the selective proteinase‐activated receptor‐2 (PAR‐2) antagonist FSLLRY and PAR‐2 receptor desensitization. An important involvement of mast cells was observed, as chronic pretreatment with the mast cell degranulator compound 48/80 or the mast cell stabilizer disodium cromoglycate prevented scratching. Also, trypsin response was inhibited by the selective COX‐2 inhibitor celecoxib and by the selective kinin B2 (FR173657) and B1 (SSR240612) receptor antagonists. Moreover, an essential role for the mediators of neurogenic inflammation was established, as the selective NK1 (FK888), NK3 (SR142801) and calcitonin gene‐related peptide (CGRP8−37 fragment) receptor antagonists inhibited trypsin‐induced itching. Similarly, blockade of transient receptor potential vanilloid 1 (TRPV1) receptors by the selective TRPV1 receptor antagonist SB366791, or by genetic deletion of TRPV1 receptor reduced this behaviour in mice. C‐fibre desensitization showed a very similar result.
Conclusions and implications
Trypsin intradermal injection proved to be a reproducible model for the study of itching and the involvement of PAR‐2 receptors. Also, trypsin‐induced itching seems to be widely dependent on neurogenic inflammation, with a role for TRPV1 receptors. In addition, several other mediators located in the sensory nerves and skin also seem to contribute to this process.
British Journal of Pharmacology (2008) 154, 1094–1103; doi:10.1038/bjp.2008.172; published online 5 May 2008
Wiley Online Library