Serine proteases degrade airway mucins in cystic fibrosis

MO Henke, G John, C Rheineck… - Infection and …, 2011 - Am Soc Microbiol
MO Henke, G John, C Rheineck, S Chillappagari, L Naehrlich, BK Rubin
Infection and immunity, 2011Am Soc Microbiol
Airway mucins are the major molecular constituents of mucus. Mucus forms the first barrier to
invading organisms in the airways and is an important defense mechanism of the lung. We
confirm that mucin concentrations are significantly decreased in airway secretions of
subjects with cystic fibrosis (CF) who have chronic Pseudomonas aeruginosa infection. In
sputum from CF subjects without a history of P. aeruginosa, we found no significant
difference in the mucin concentration compared to mucus from normal controls. We …
Abstract
Airway mucins are the major molecular constituents of mucus. Mucus forms the first barrier to invading organisms in the airways and is an important defense mechanism of the lung. We confirm that mucin concentrations are significantly decreased in airway secretions of subjects with cystic fibrosis (CF) who have chronic Pseudomonas aeruginosa infection. In sputum from CF subjects without a history of P. aeruginosa, we found no significant difference in the mucin concentration compared to mucus from normal controls. We demonstrate that mucins can be degraded by synthetic human neutrophil elastase (HNE) and P. aeruginosa elastase B (pseudolysin) and that degradation was inhibited by serine proteases inhibitors (diisopropyl fluorophosphates [DFP], phenylmethylsulfonyl fluoride [PMSF], and 1-chloro-3-tosylamido-7-amino-2-heptanone HCl [TLCK]). The mucin concentration in airway secretions from CF subjects is similar to that for normal subjects until there is infection by P. aeruginosa, and after that, the mucin concentration decreases dramatically. This is most likely due to degradation by serine proteases. The loss of this mucin barrier may contribute to chronic airway infection in the CF airway.
American Society for Microbiology