Selective vulnerability of motor neurons and dissociation of pre-and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular …

LM Murray, LH Comley, D Thomson… - Human molecular …, 2008 - academic.oup.com
LM Murray, LH Comley, D Thomson, N Parkinson, K Talbot, TH Gillingwater
Human molecular genetics, 2008academic.oup.com
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form
of motor neuron disease. Previous studies have highlighted nerve-and muscle-specific
events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of
lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss
of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of
neuromuscular synaptic pathology in the Smn−/−; SMN2 and Smn−/−; SMN2; Δ7 mouse …
Abstract
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn−/−;SMN2 and Smn−/−;SMN2;Δ7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn−/−;SMN2;Δ7 mice was reduced compared with Smn−/−;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype.
Oxford University Press