[HTML][HTML] GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency

P Ye, W Chen, J Wu, X Huang, J Li… - The Journal of …, 2013 - Am Soc Clin Investig
P Ye, W Chen, J Wu, X Huang, J Li, S Wang, Z Liu, G Wang, X Yang, P Zhang, Q Lv, J Xia
The Journal of clinical investigation, 2013Am Soc Clin Investig
Heterozygous loss-of-function SMAD3 (Mothers against decapentaplegic homolog 3)
mutations lead to aneurysm-osteoarthritis syndrome (AOS). In the present study, we found
that mice lacking Smad3 had a vascular phenotype similar to AOS, marked by the
progressive development of aneurysms. These aneurysms were associated with various
pathological changes in transmural inflammatory cell infiltration. Bone marrow transplants
from Smad3–/–mice induced aortitis and aortic root dilation in irradiated WT recipient mice …
Heterozygous loss-of-function SMAD3 (Mothers against decapentaplegic homolog 3) mutations lead to aneurysm-osteoarthritis syndrome (AOS). In the present study, we found that mice lacking Smad3 had a vascular phenotype similar to AOS, marked by the progressive development of aneurysms. These aneurysms were associated with various pathological changes in transmural inflammatory cell infiltration. Bone marrow transplants from Smad3–/– mice induced aortitis and aortic root dilation in irradiated WT recipient mice. Transplantation of CD4+ T cells from Smad3–/– mice also induced aortitis in Smad3+/+ recipient mice, while depletion of CD4+ T cells in Smad3–/– mice reduced the infiltration of inflammatory cells in the aortic root. Furthermore, IFN-γ deficiency increased, while IL-17 deficiency decreased, disease severity in Smad3+/– mice. Cytokine secretion was measured using a cytokine quantibody array, and Smad3–/– CD4+ T cells secreted more GM-CSF than Smad3+/+ CD4+ T cells. GM-CSF induced CD11b+Gr-1+Ly-6Chi inflammatory monocyte accumulation in the aortic root, but administration of anti–GM-CSF mAb to Smad3–/– mice resulted in significantly less inflammation and dilation in the aortic root. We also identified a missense mutation (c.985A>G) in a family of thoracic aortic aneurysms. Intense inflammatory infiltration and GM-CSF expression was observed in aortas specimens of these patients, suggesting that GM-CSF is potentially involved in the development of AOS.
The Journal of Clinical Investigation