Hemoglobin-and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity

MS Paller - American Journal of Physiology-Renal …, 1988 - journals.physiology.org
MS Paller
American Journal of Physiology-Renal Physiology, 1988journals.physiology.org
In ischemic acute renal failure oxygen free radicals may mediate injury. In addition, iron
appears to play a critical role in hydroxyl radical formation and lipid peroxidation during
reperfusion of ischemic kidneys. To determine whether iron may play a similar role in
pigment (heme protein)-induced acute renal failure, we studied the effects of the iron
chelator deferoxamine in two experimental models of pigment-induced acute renal failure,
intramuscular glycerol injection and intravenous hemoglobin infusion without and with …
In ischemic acute renal failure oxygen free radicals may mediate injury. In addition, iron appears to play a critical role in hydroxyl radical formation and lipid peroxidation during reperfusion of ischemic kidneys. To determine whether iron may play a similar role in pigment (heme protein)-induced acute renal failure, we studied the effects of the iron chelator deferoxamine in two experimental models of pigment-induced acute renal failure, intramuscular glycerol injection and intravenous hemoglobin infusion without and with concurrent ischemia in the rat. Intramuscular injection of 50% glycerol (5 ml/kg) caused inulin clearance to fall to 0.13 +/- 0.03 (SE) ml/min (normal value, 1.0–1.2 ml/min). Continuous infusion of deferoxamine beginning at the time of glycerol injection significantly attenuated this renal dysfunction. Deferoxamine-treated animals had an inulin clearance of 0.37 +/- 0.06 ml/min (P less than 0.01). Glycerol injection was also associated with significant lipid peroxidation, measured as renal malondialdehyde content. Deferoxamine-treated glycerol-injected rats had renal malondialdehyde content not significantly different from control animals. In another model of heme pigment-induced renal injury, hemoglobin was infused to produce hemoglobinuria. Inulin clearance 1 h after hemoglobin infusion was significantly reduced to 0.84 +/- 0.5 ml/min (P less than 0.025). Infusion of deferoxamine after hemoglobin prevented the hemoglobin-induced decrease in inulin clearance. Thirty minutes of renal ischemia followed by infusion of hemoglobin resulted in more severe renal dysfunction with inulin clearance of 0.54 +/- 0.08 ml/min. Deferoxamine infused at the time of reperfusion attenuated the fall in glomerular filtration rate after ischemia and hemoglobin infusion:inulin clearance 1.04 +/- 0.07 (P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
American Physiological Society