Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development

SJ Huh, S Liang, A Sharma, C Dong, GP Robertson - Cancer research, 2010 - AACR
SJ Huh, S Liang, A Sharma, C Dong, GP Robertson
Cancer research, 2010AACR
It is unknown why only a minority of circulating tumor cells trapped in lung capillaries form
metastases and involvement of immune cells remains uncertain. A novel model has been
developed in this study showing that neutrophils regulate lung metastasis development
through physical interaction and anchoring of circulating tumor cells to endothelium. Human
melanoma cells were iv injected into nude mice leading to the entrapment of many cancer
cells; however, 24 hours later, very few remained in the lungs. In contrast, injection of human …
Abstract
It is unknown why only a minority of circulating tumor cells trapped in lung capillaries form metastases and involvement of immune cells remains uncertain. A novel model has been developed in this study showing that neutrophils regulate lung metastasis development through physical interaction and anchoring of circulating tumor cells to endothelium. Human melanoma cells were i.v. injected into nude mice leading to the entrapment of many cancer cells; however, 24 hours later, very few remained in the lungs. In contrast, injection of human neutrophils an hour after tumor cell injection increased cancer cell retention by ∼3-fold. Entrapped melanoma cells produced and secreted high levels of a cytokine called interleukin-8 (IL-8), attracting neutrophils and increasing tethering β2 integrin expression by 75% to 100%. Intercellular adhesion molecule-1 on melanoma cells and β2 integrin on neutrophils interacted, promoting anchoring to vascular endothelium. Decreasing IL-8 secretion from melanoma cells lowered extracellular levels by 20% to 50%, decreased β2 integrin on neutrophils by ∼50%, and reduced neutrophil-mediated extravasation by 25% to 60%, resulting in ∼50% fewer melanoma cells being tethered to endothelium and retained in lungs. Thus, transendothelial migration and lung metastasis development decreased by ∼50%, showing that targeting IL-8 in melanoma cells has the potential to decrease metastasis development by disrupting interaction with neutrophils. Cancer Res; 70(14); 6071–82. ©2010 AACR.
AACR