Zebrafish model for human long QT syndrome

R Arnaout, T Ferrer, J Huisken… - Proceedings of the …, 2007 - National Acad Sciences
Proceedings of the National Academy of Sciences, 2007National Acad Sciences
Long QT syndrome (LQTS) is a disorder of ventricular repolarization that predisposes
affected individuals to lethal cardiac arrhythmias. To date, an appropriate animal model of
inherited LQTS does not exist. The zebrafish is a powerful vertebrate model used to dissect
molecular pathways of cardiovascular development and disease. Because fundamental
electrical properties of the zebrafish heart are remarkably similar to those of the human
heart, the zebrafish may be an appropriate model for studying human inherited arrhythmias …
Long QT syndrome (LQTS) is a disorder of ventricular repolarization that predisposes affected individuals to lethal cardiac arrhythmias. To date, an appropriate animal model of inherited LQTS does not exist. The zebrafish is a powerful vertebrate model used to dissect molecular pathways of cardiovascular development and disease. Because fundamental electrical properties of the zebrafish heart are remarkably similar to those of the human heart, the zebrafish may be an appropriate model for studying human inherited arrhythmias. Here we describe the molecular, cellular, and electrophysiological basis of a zebrafish mutant characterized by ventricular asystole. Genetic mapping and direct sequencing identify the affected gene as kcnh2, which encodes the channel responsible for the rapidly activating delayed rectifier K+ current (IKr). We show that complete loss of functional IKr in embryonic hearts leads to ventricular cell membrane depolarization, inability to generate action potentials (APs), and disrupted calcium release. A small hyperpolarizing current restores spontaneous APs, implying wild-type function of other ionic currents critical for AP generation. Heterozygous fish manifest overt cellular and electrocardiographic evidence for delayed ventricular repolarization. Our findings provide insight into the pathogenesis of homozygous kcnh2 mutations and expand the use of zebrafish mutants as a model system to study human arrhythmias.
National Acad Sciences