Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA …

M Marin, S Golem, KM Rose, SL Kozak… - Journal of virology, 2008 - Am Soc Microbiol
M Marin, S Golem, KM Rose, SL Kozak, D Kabat
Journal of virology, 2008Am Soc Microbiol
VifIIIB, which has been a standard model for the viral infectivity factor of human
immunodeficiency virus type 1 (HIV-1), binds the cytidine deaminase APOBEC3G (A3G) and
induces its degradation, thereby precluding its lethal incorporation into assembling virions.
Additionally, VifIIIB less efficiently degrades A3F, another potent anti-HIV-1 cytidine
deaminase. Although the APOBEC3 paralogs A3A, A3B, and A3C have weaker anti-HIV-1
activities and are only partially degraded by VifIIIB, we found that VifIIIB induces their …
Abstract
VifIIIB, which has been a standard model for the viral infectivity factor of human immunodeficiency virus type 1 (HIV-1), binds the cytidine deaminase APOBEC3G (A3G) and induces its degradation, thereby precluding its lethal incorporation into assembling virions. Additionally, VifIIIB less efficiently degrades A3F, another potent anti-HIV-1 cytidine deaminase. Although the APOBEC3 paralogs A3A, A3B, and A3C have weaker anti-HIV-1 activities and are only partially degraded by VifIIIB, we found that VifIIIB induces their emigration from the nucleus to the cytosol and thereby causes net increases in the cytosolic concentrations and anti-HIV-1 activities of A3A and A3B. In contrast, some other Vifs, exemplified by VifHXB2 and VifELI-1, much more efficiently degrade and thereby neutralize all APOBEC3s. Studies focused mainly on A3F imply that it occurs associated with mRNA-PABP1 in translationally active polysomes and to a lesser extent in mRNA processing bodies (P-bodies). A3F appears to stabilize the P-bodies with which it is associated. A correspondingly small proportion of VifIIIB also localizes in P-bodies in an A3F-dependent manner. Stress causes A3A, A3B, A3C, and A3F to colocalize efficiently with VifIIIB and mRNA-PABP1 complexes in stress granules in a manner that is prevented by cycloheximide, an inhibitor of translational elongation. Coimmunoprecipitation studies suggest that Vifs from different HIV-1 isolates associate with all tested APOBEC3s. Thus, Vifs interact closely with structurally diverse APOBEC3s, with effects on their subcellular localization, degradation rates, and antiviral activities. Cytosolic APOBEC3-Vif complexes are predominantly bound to mRNAs that dynamically move between translationally active and storage or processing pools.
American Society for Microbiology