NMDA receptor antagonist felbamate reduces behavioral deficits and blood–brain barrier permeability changes after experimental subarachnoid hemorrhage in the …

A Germanò, M Caffo, FF Angileri, F Arcadi… - Journal of …, 2007 - liebertpub.com
A Germanò, M Caffo, FF Angileri, F Arcadi, J Newcomb-Fernandez, G Caruso, F Meli…
Journal of neurotrauma, 2007liebertpub.com
Increased levels of glutamate and aspartate have been detected after subarachnoid
hemorrhage (SAH) that correlate with neurological status. The NMDA receptor antagonist
felbamate (FBM; 2-phenyl-1, 3-propanediol dicarbamate) is an anti-epileptic drug that elicits
neuroprotective effects in different experimental models of hypoxia-ischemia. The aim of this
dose-response study was to evaluate the effect of FBM after experimental SAH in rats on (1)
behavioral deficits (employing a battery of assessment tasks days 1–5 post-injury) and (2) …
Increased levels of glutamate and aspartate have been detected after subarachnoid hemorrhage (SAH) that correlate with neurological status. The NMDA receptor antagonist felbamate (FBM; 2-phenyl-1,3-propanediol dicarbamate) is an anti-epileptic drug that elicits neuroprotective effects in different experimental models of hypoxia-ischemia. The aim of this dose-response study was to evaluate the effect of FBM after experimental SAH in rats on (1) behavioral deficits (employing a battery of assessment tasks days 1–5 post-injury) and (2) blood–brain barrier (BBB) permeability changes (quantifying microvascular alterations according to the extravasation of protein-bound Evans Blue by a spectrophotofluorimetric technique 2 days post-injury). Animals were injected with 400 μL of autologous blood into the cisterna magna. Within 5 min, rats received daily oral administration of FBM (15, 30, or 45 mg/kg) for 2 or 5 days. Results were compared with sham-injured controls treated with oral saline or FBM (15, 30, or 45 mg/kg). FBM administration significantly ameliorated SAH-related changes in Beam Balance scores on days 1 and 2 and Beam Balance time on days 1–3, Beam Walking performance on days 1 and 2, and Body Weight on days 3–5. FBM also decreased BBB permeability changes in frontal, temporal, parietal, occipital, and cerebellar cortices; subcortical and cerebellar gray matter; and brainstem. This study demonstrates that, in terms of behavioral and microvascular effects, FBM is beneficial in a dose-dependent manner after experimental SAH in rats. These results reinforce the concept that NMDA excitotoxicity is involved in the cerebral dysfunction that follows SAH.
Mary Ann Liebert