Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced histamine release is enhanced with SHIP-1 knockdown in cultured human …

JM Langdon, JT Schroeder, BM Vonakis… - Journal of Leucocyte …, 2008 - academic.oup.com
JM Langdon, JT Schroeder, BM Vonakis, AP Bieneman, K Chichester, SM MacDonald
Journal of Leucocyte Biology, 2008academic.oup.com
Previously, we demonstrated a negative correlation between histamine release to histamine-
releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of
SHIP-1 in human basophils. The present study was conducted to investigate whether
suppressing SHIP-1 using small interfering (si) RNA technology would alter the releasability
of culture-derived mast cells and basophils, as determined by HRF/TCTP histamine release.
Frozen CD34+ cells were obtained from the Fred Hutchinson Cancer Research Center …
Abstract
Previously, we demonstrated a negative correlation between histamine release to histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of SHIP-1 in human basophils. The present study was conducted to investigate whether suppressing SHIP-1 using small interfering (si)RNA technology would alter the releasability of culture-derived mast cells and basophils, as determined by HRF/TCTP histamine release. Frozen CD34+ cells were obtained from the Fred Hutchinson Cancer Research Center (Seattle, WA, USA). Cells were grown in StemPro-34 medium containing cytokines: mast cells with IL-6 and stem cell factor (100 ng/ml each) for 6–8 weeks and basophils with IL-3 (6.7 ng/ml) for 2–3 weeks. siRNA transfections were performed during Week 6 for mast cells and Week 2 for basophils with siRNA for SHIP-1 or a negative control siRNA. Changes in SHIP-1 expression were determined by Western blot. The functional knockdown was measured by HRF/TCTP-induced histamine release. siRNA knockdown of SHIP-1 in mast cells ranged from 31% to 82%, mean 65 ± 12%, compared with control (n=4). Histamine release to HRF/TCTP was increased only slightly in two experiments. SHIP-1 knockdown in basophils ranged from 34% to 69%, mean 51.8 ± 7% (n=4). Histamine release to HRF/TCTP in these basophils was dependent on the amount of SHIP knockdown. Mast cells and basophils derived from CD34+ precursor cells represent suitable models for transfection studies. Reducing SHIP-1 protein in cultured mast cells and in cultured basophils increases releasability of the cells.
Oxford University Press