[PDF][PDF] SOX2 functions to maintain neural progenitor identity

V Graham, J Khudyakov, P Ellis, L Pevny - Neuron, 2003 - cell.com
V Graham, J Khudyakov, P Ellis, L Pevny
Neuron, 2003cell.com
Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics,
including their pseudoepithelial morphology and their ability to divide and differentiate.
SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and
Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We
show here that constitutive expression of SOX2 inhibits neuronal differentiation and results
in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling …
Abstract
Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.
cell.com