Motif module map reveals enforcement of aging by continual NF-κB activity

AS Adler, S Sinha, TLA Kawahara… - Genes & …, 2007 - genesdev.cshlp.org
Genes & development, 2007genesdev.cshlp.org
Aging is characterized by specific alterations in gene expression, but their underlying
mechanisms and functional consequences are not well understood. Here we develop a
systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent
gene expression across different tissues and organisms. Integrated analysis of 365
microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-
dependent gene expression in human and mouse. The motif most strongly associated with …
Aging is characterized by specific alterations in gene expression, but their underlying mechanisms and functional consequences are not well understood. Here we develop a systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent gene expression across different tissues and organisms. Integrated analysis of 365 microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-dependent gene expression in human and mouse. The motif most strongly associated with aging was that of the transcription factor NF-κB. Inducible genetic blockade of NF-κB for 2 wk in the epidermis of chronologically aged mice reverted the tissue characteristics and global gene expression programs to those of young mice. Age-specific NF-κB blockade and orthogonal cell cycle interventions revealed that NF-κB controls cell cycle exit and gene expression signature of aging in parallel but not sequential pathways. These results identify a conserved network of regulatory pathways underlying mammalian aging and show that NF-κB is continually required to enforce many features of aging in a tissue-specific manner.
genesdev.cshlp.org