Effect of rosiglitazone on the differential expression of obesity and insulin resistance associated proteins in lep/lep mice

JC Sanchez, V Converset, A Nolan… - PROTEOMICS …, 2003 - Wiley Online Library
JC Sanchez, V Converset, A Nolan, G Schmid, S Wang, M Heller, MV Sennitt…
PROTEOMICS: International Edition, 2003Wiley Online Library
Peroxisome proliferator‐activated receptors (PPARs) participate in the molecular
mechanism of pathologies with altered lipid homeostasis such as type 2 diabetes or obesity.
The insulin sensitizer drug, rosiglitazone, has been shown to bind and activate PPAR‐γ1 in
adipocytes and PPAR‐γ2 in hepatocytes. The identification of new molecular targets
associated with fatty acid oxidation and PPAR‐γ nuclear receptor regulation in insulin
resistance tissues is a key research goal. In the present study, we have used a proteomic …
Abstract
Peroxisome proliferator‐activated receptors (PPARs) participate in the molecular mechanism of pathologies with altered lipid homeostasis such as type 2 diabetes or obesity. The insulin sensitizer drug, rosiglitazone, has been shown to bind and activate PPAR‐γ1 in adipocytes and PPAR‐γ2 in hepatocytes. The identification of new molecular targets associated with fatty acid oxidation and PPAR‐γ nuclear receptor regulation in insulin resistance tissues is a key research goal. In the present study, we have used a proteomic approach to identify such targets. Lean and obese C57 Bl/6J lep/lep mice were given BRL49653, rosiglitazone, 10 mg/kg diet, by dietary admixture for 7 days. Rosiglitazone normalized the impaired glucose tolerance and dyslipidemia in lep/lep mice but had no significant effect in the lean mice. Samples of liver, white and brown adipose tissue, and muscle proteins were obtained and 100 μg of proteins was arrayed by two‐dimensional gel electrophoresis. Thirty‐four polypeptides were differentially expressed (p < 0.05) between lep/lep and lean mice and eleven were significantly (p < 0.05) modulated by rosiglitazone treatment of the obese mice. None of the proteins was modulated by rosiglitazone treatment of the lean mice. The identity of these differentially expressed proteins was made using tandem mass spectrometric analysis and revealed components of fatty acid and carbohydrate metabolism as well as proteins with unknown function.
Wiley Online Library