Isolation and characterization of IKr in cardiac myocytes by Cs+ permeation

S Zhang - American Journal of Physiology-Heart and …, 2006 - journals.physiology.org
American Journal of Physiology-Heart and Circulatory Physiology, 2006journals.physiology.org
Isolation of the rapidly activating delayed rectifier potassium current (I Kr) from other cardiac
currents has been a difficult task for quantitative study of this current. The present study was
designed to separate I Kr using Cs+ in cardiac myocytes. Cs+ have been known to block a
variety of K+ channels, including many of those involved in the cardiac action potential such
as inward rectifier potassium current I K1 and the transient outward potassium current I to.
However, under isotonic Cs+ conditions (135 mM Cs+), a significant membrane current was …
Isolation of the rapidly activating delayed rectifier potassium current (IKr) from other cardiac currents has been a difficult task for quantitative study of this current. The present study was designed to separate IKr using Cs+ in cardiac myocytes. Cs+ have been known to block a variety of K+ channels, including many of those involved in the cardiac action potential such as inward rectifier potassium current IK1 and the transient outward potassium current Ito. However, under isotonic Cs+ conditions (135 mM Cs+), a significant membrane current was recorded in isolated rabbit ventricular myocytes. This current displayed the voltage-dependent onset of and recovery from inactivation that are characteristic to IKr. Consistently, the current was selectively inhibited by the specific IKr blockers. The biophysical and pharmacological properties of the Cs+-carried human ether-a-go-go-related gene (hERG) current were very similar to those of the Cs+-carried IKr in ventricular myocytes. The primary sequence of the selectivity filter in hERG was in part responsible for the Cs+ permeability, which was lost when the sequence was changed from GFG to GYG, characteristic of other, Cs+-impermeable K+ channels. Thus the unique high Cs+ permeability in IKr channels provides an effective way to isolate IKr current. Although the biophysical and pharmacological properties of the Cs+-carried IKr are different from those of the K+-carried IKr, such an assay enables IKr current to be recorded at a level that is large enough and sufficiently robust to evaluate any IKr alterations in native tissues in response to physiological or pathological changes. It is particularly useful for exploring the role of reduction of IKr in arrhythmias associated with heart failure and long QT syndrome due to the reduced hERG channel membrane expression.
American Physiological Society