Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr (-/-) mice.

LL Clarke, BR Grubb, JR Yankaskas… - Proceedings of the …, 1994 - National Acad Sciences
LL Clarke, BR Grubb, JR Yankaskas, CU Cotton, A McKenzie, RC Boucher
Proceedings of the National Academy of Sciences, 1994National Acad Sciences
Although loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl-
channel function is common to all epithelia in cystic fibrosis (CF) patients, the severity of
disease varies in different organs. We hypothesized that differences in disease severity in
CF relate to the expression of an" alternative" plasma membrane Cl-conductance. In CF
mice [Cftr (-/-); mice homozygous for Ser-489 to Xaa mutation], which do not express cAMP
CFTR-mediated Cl-secretion, we surveyed organs that exhibit a range of disease severity for …
Although loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- channel function is common to all epithelia in cystic fibrosis (CF) patients, the severity of disease varies in different organs. We hypothesized that differences in disease severity in CF relate to the expression of an "alternative" plasma membrane Cl- conductance. In CF mice [Cftr(-/-); mice homozygous for Ser-489 to Xaa mutation], which do not express cAMP CFTR-mediated Cl- secretion, we surveyed organs that exhibit a range of disease severity for a Ca(2+)-mediated apical membrane epithelial Cl- conductance. This alternative conductance (Cl-a) was detected in epithelia of organs from CF mice that exhibit a mild disease phenotype (airway, pancreas) but not in epithelia with a severe phenotype (small, large intestine). We conclude that (i) there is an intracellular Ca(2+)-regulated Cl- conductance that is molecularly distinct from CFTR; and (ii) the level of expression of this alternative Cl- conductance in the epithelium is an important determinant of the severity of organ-level disease in CF.
National Acad Sciences