Prevention of apoptotic and necrotic cell death, caspase‐3 activation, and renal dysfunction by melatonin after ischemia/reperfusion

OR Kunduzova, G Escourrou, MH Seguelas… - The FASEB …, 2003 - Wiley Online Library
OR Kunduzova, G Escourrou, MH Seguelas, P Delagrange, F De La Farge, C Cambon…
The FASEB journal, 2003Wiley Online Library
The pineal hormone melatonin has been reported to protect tissue from oxidative damage.
This study was designed to determine whether melatonin could prevent cell events leading
to tissue injury and renal dysfunction after ischemia/reperfusion (I/R). Using an in vivo rat
model of I/R, we show a significant increase in kidney malondialdehyde concentrations,
reflecting lipid peroxidation, and cell apoptosis measured by TUNEL staining. This apoptotic
cell death was associated with an increase in the activity of the proapoptotic factor caspase …
Abstract
The pineal hormone melatonin has been reported to protect tissue from oxidative damage. This study was designed to determine whether melatonin could prevent cell events leading to tissue injury and renal dysfunction after ischemia/reperfusion (I/R). Using an in vivo rat model of I/R, we show a significant increase in kidney malondialdehyde concentrations, reflecting lipid peroxidation, and cell apoptosis measured by TUNEL staining. This apoptotic cell death was associated with an increase in the activity of the proapoptotic factor caspase‐3, determined by fluorometric protease activity assay. Histomorphological analysis of ischemic kidneys revealed that the most extensive tubular necrosis occurred at 24 and 48 h after reperfusion, which correlated with peak elevations in blood urea nitrogen and creatinine. Rat pretreatment with melatonin prevented lipid peroxidation, cell apoptosis, and necrosis and blocked caspase‐3 activity. The prevention of tissue injury was associated with the improvement of renal function as shown by the decrease in blood urea nitrogen and creatinine concentrations. The demonstration that melatonin prevents postreperfusion apoptotic and necrotic cell death and improves renal function suggests that melatonin may represent a novel therapeutic approach for prevention of I/R injury.
Wiley Online Library