Pioglitazone, a PPAR-γ ligand, provides protection from dextran sulfate sodium-induced colitis in mice in association with inhibition of the NF-κB-cytokine cascade

T Takagi, Y Naito, N Tomatsuri, O Handa… - Redox …, 2002 - Taylor & Francis
T Takagi, Y Naito, N Tomatsuri, O Handa, H Ichikawa, N Yoshida, T Yoshikawa
Redox Report, 2002Taylor & Francis
Nuclear factor-κB-dependent up-regulation of inflammatory cytokines occurs in inflammatory
bowel disease. We investigated the effect of pioglitazone, a peroxisome proliferator-
activated receptor-γ ligand, on dextran sulfate sodium-induced colonic mucosal injury and
inflammation in mice. Acute colitis was induced in female mice receiving 0, 1, 3, and 10
mg/kg ip of pioglitazone daily. Colonic mucosal inflammation was evaluated chemically and
histologically. Thiobarbituric acid-reactive substances and tissue-associated …
Abstract
Nuclear factor-κB-dependent up-regulation of inflammatory cytokines occurs in inflammatory bowel disease. We investigated the effect of pioglitazone, a peroxisome proliferator-activated receptor-γ ligand, on dextran sulfate sodium-induced colonic mucosal injury and inflammation in mice. Acute colitis was induced in female mice receiving 0, 1, 3, and 10 mg/kg i.p. of pioglitazone daily. Colonic mucosal inflammation was evaluated chemically and histologically. Thiobarbituric acid-reactive substances and tissue-associated myeloperoxidase activity were measured in intestinal mucosa as indices of lipid peroxidation and neutrophil infiltration, respectively. Colonic mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase was measured by reverse transcription-PCR and nuclear factor-κB activation was evaluated by electrophoretic mobility shift assay. Dextran sulfate sodium administration resulted in decreases in body weight and colon length and increases in lipid peroxide and neutrophil accumulation of the intestine. In contrast, co-administration with pioglitazone prevented these changes. Transcripts coding for pro-inflammatory cytokines and inducible nitric oxide were expressed in high levels after the development of colitis, and pioglitazone markedly reduced mRNA expression of these genes. DNA binding activity of nuclear factor-κB was markedly increased, whereas in pioglitazone co-treated intestines the effect was significantly reduced. These data suggest that peroxisome proliferator-activated receptor-γ may be a novel therapeutic target for the therapy of inflammatory bowel disease.
Taylor & Francis Online