Properties of linkage disequilibrium (LD) maps

W Zhang, A Collins, N Maniatis… - Proceedings of the …, 2002 - National Acad Sciences
W Zhang, A Collins, N Maniatis, W Tapper, NE Morton
Proceedings of the National Academy of Sciences, 2002National Acad Sciences
A linkage disequilibrium map is expressed in linkage disequilibrium (LD) units (LDU)
discriminating blocks of conserved LD that have additive distances and locations monotonic
with physical (kb) and genetic (cM) maps. There is remarkable agreement between LDU
steps and sites of meiotic recombination in the one body of data informative for crossing
over, and good agreement with another method that defines blocks without assigning an LD
location to each marker. The map may be constructed from haplotypes or diplotypes, and …
A linkage disequilibrium map is expressed in linkage disequilibrium (LD) units (LDU) discriminating blocks of conserved LD that have additive distances and locations monotonic with physical (kb) and genetic (cM) maps. There is remarkable agreement between LDU steps and sites of meiotic recombination in the one body of data informative for crossing over, and good agreement with another method that defines blocks without assigning an LD location to each marker. The map may be constructed from haplotypes or diplotypes, and efficiency estimated from the empirical variance of LD is substantially greater for the ρ metric based on evolutionary theory than for the absolute correlation r, and for the LD map compared with its physical counterpart. The empirical variance is nearly three times as great for the worst alternative (r and kb map) as for the most efficient approach (ρ and LD map). According to the empirical variances, blocks are best defined by zero distance between included markers. Because block size is algorithm-dependent and highly variable, the number of markers required for positional cloning is minimized by uniform spacing on the LD map, which is estimated to have ≈1 LDU per locus, but with much variation among regions. No alternative representation of linkage disequilibrium (some of which are loosely called maps) has these properties, suggesting that LD maps are optimal for positional cloning of genes determining disease susceptibility.
National Acad Sciences