Extracellular iron chelators protect kidney cells from hypoxia/reoxygenation

MS Paller, BE Hedlund - Free Radical Biology and Medicine, 1994 - Elsevier
MS Paller, BE Hedlund
Free Radical Biology and Medicine, 1994Elsevier
Iron is an important contributor to reoxygenation injury because of its ability to promote
hydroxyl radical formation. In previous in vivo studies, we demonstrated that iron chelators
that underwent glomerular filtration provided significant protection against postischemic
renal injury. An in vitro system was employed to further characterize the protection provided
by extracellular iron chelators. Primary cultures of rat proximal tubular epithelial cells were
subjected to 60 min hypoxia and 30 min reoxygenation (H/R). During H/R, there was a 67 …
Abstract
Iron is an important contributor to reoxygenation injury because of its ability to promote hydroxyl radical formation. In previous in vivo studies, we demonstrated that iron chelators that underwent glomerular filtration provided significant protection against postischemic renal injury. An in vitro system was employed to further characterize the protection provided by extracellular iron chelators. Primary cultures of rat proximal tubular epithelial cells were subjected to 60 min hypoxia and 30 min reoxygenation (H/R). During H/R, there was a 67% increase in ferrozine-detectable iron in cell homogenates and increased release of iron into the extracellular space. Cells pretreated with either deferoxamine (DFO) or hydroxyethyl starch-conjugated deferoxamine (HES-DFO), an iron chelator predicted to be confined to the extracellular space, were greatly protected against lethal cell injury. To further localize the site of action of DFO and HES-DFO, tracer quantities of 59Fe were added to DFO or HES-DFO, and their distribution after 2 h was quantitated. Less than 0.1% of DFO entered the cells, whereas essentially none of the HES-DFO was cell-associated. These findings suggest that iron was released during hypoxia/reoxygenation and caused lethal cell injury. Iron chelators confined to the extracellular space provided substantial protection against injury.
Elsevier