Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes

C Badorff, RP Brandes, R Popp, S Rupp, C Urbich… - Circulation, 2003 - Am Heart Assoc
C Badorff, RP Brandes, R Popp, S Rupp, C Urbich, A Aicher, I Fleming, R Busse, AM Zeiher…
Circulation, 2003Am Heart Assoc
Background—Further to promoting angiogenesis, cell therapy may be an approach for
cardiac regeneration. Recent studies suggest that progenitor cells can transdifferentiate into
other lineages. However, the transdifferentiation potential of endothelial progenitor cells
(EPCs) is unknown. Methods and Results—EPCs were obtained from peripheral blood
mononuclear cells of healthy adults or coronary artery disease (CAD) patients by cultivating
with endothelial cell medium and growth factors. After 3 days,> 95% of adherent cells were …
Background— Further to promoting angiogenesis, cell therapy may be an approach for cardiac regeneration. Recent studies suggest that progenitor cells can transdifferentiate into other lineages. However, the transdifferentiation potential of endothelial progenitor cells (EPCs) is unknown.
Methods and Results— EPCs were obtained from peripheral blood mononuclear cells of healthy adults or coronary artery disease (CAD) patients by cultivating with endothelial cell medium and growth factors. After 3 days, >95% of adherent cells were functionally and phenotypically EPCs. Diacetylated LDL–labeled EPCs were then cocultivated with rat cardiomyocytes for 6 days, resulting in significant increases of EPC cell length and size to a cardiomyocyte-like morphology. Biochemically, 9.94±1.39% and 5.04±1.09% of EPCs from healthy adults (n=15) or CAD patients (n=14, P<0.01 versus healthy adults), respectively, expressed α-sarcomeric actinin as measured by flow cytometry. Immunocytochemistry showed that human EPCs expressed α-sarcomeric actinin, cardiac troponin I (both with partial sarcomeric organization), atrial natriuretic peptide, and myocyte enhancer factor 2. Fluo 4 imaging demonstrated calcium transients synchronized with adjacent rat cardiomyocytes in transdifferentiated human EPCs. Single-cell microinjection of Lucifer yellow and calcein-AM labeling of cardiomyocytes demonstrated gap junctional communication between 51±7% of EPCs (16 hours after labeling, n=4) and cardiomyocytes. EPC transdifferentiation into cardiomyocytes was not observed with conditioned medium but in coculture with paraformaldehyde-fixed cardiomyocytes.
Conclusions— EPCs from healthy volunteers and CAD patients can transdifferentiate in vitro into functionally active cardiomyocytes when cocultivated with rat cardiomyocytes. Cell-to-cell contact but not cellular fusion mediates EPC transdifferentiation. The therapeutic use of autologous EPCs may aid cardiomyocyte regeneration in patients with ischemic heart disease.
Am Heart Assoc