Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction

M Oelze, H Mollnau, N Hoffmann, A Warnholtz… - Circulation …, 2000 - Am Heart Assoc
M Oelze, H Mollnau, N Hoffmann, A Warnholtz, M Bodenschatz, A Smolenski, U Walter
Circulation research, 2000Am Heart Assoc
Studies with cGMP-dependent protein kinase I (cGK-I)-deficient human cells and mice
demonstrated that cGK-I ablation completely disrupts the NO/cGMP pathway in vascular
tissue, which indicates a key role of this protein kinase as a mediator of the NO/cGMP action.
Analysis of the vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-
VASP) is a useful tool to monitor cGK-I activation in platelets and cultured endothelial and
smooth muscle cells. Therefore, we investigated whether endothelial dysfunction and/or …
Abstract
—Studies with cGMP-dependent protein kinase I (cGK-I)-deficient human cells and mice demonstrated that cGK-I ablation completely disrupts the NO/cGMP pathway in vascular tissue, which indicates a key role of this protein kinase as a mediator of the NO/cGMP action. Analysis of the vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-VASP) is a useful tool to monitor cGK-I activation in platelets and cultured endothelial and smooth muscle cells. Therefore, we investigated whether endothelial dysfunction and/or vascular NO bioavailability is reflected by decreased vessel wall P-VASP and whether improvement of endothelial dysfunction restores this P-VASP. Incubation of aortic tissue from New Zealand White Rabbits with the NOS inhibitor NG-nitro-ld-arginine and endothelial removal strikingly reduced P-VASP. Oxidative stress induced by inhibition of CuZn superoxide dismutase increased superoxide and decreased P-VASP. Endothelial dysfunction in hyperlipidemic Watanabe rabbits (WHHL) was associated with increased vascular superoxide and with decreased P-VASP. Treatment of WHHL with AT1 receptor blockade improved endothelial dysfunction, reduced vascular superoxide, increased vascular NO bioavailability, and increased P-VASP. Therefore, the level of vessel P-VASP closely follows changes in endothelial function and vascular oxidative stress. P-VASP is suggested to represent a novel biochemical marker for monitoring the NO-stimulated sGC/cGK-I pathway and endothelial integrity in vascular tissue.
Am Heart Assoc