Conus geographus toxins that discriminate between neuronal and muscle sodium channels.

LJ Cruz, WR Gray, BM Olivera, RD Zeikus… - Journal of Biological …, 1985 - Elsevier
LJ Cruz, WR Gray, BM Olivera, RD Zeikus, L Kerr, D Yoshikami, E Moczydlowski
Journal of Biological Chemistry, 1985Elsevier
We describe the properties of a family of 22-amino acid peptides, the mu-conotoxins, which
are useful probes for investigating voltage-dependent sodium channels of excitable tissues.
The mu-conotoxins are present in the venom of the piscivorous marine snail, Conus
geographus L. We have purified seven homologs of the mu-conotoxin set and determined
their amino acid sequences, as follows, where Hyp= trans-4-hydroxyproline. GIIIA RDCCT
Hyp. Hyp. KKCKDRQCK Hyp. QRCCA-NH2 [Pro6] GIIIA RDCCTP Hyp. KKCKDRQCK Hyp …
We describe the properties of a family of 22-amino acid peptides, the mu-conotoxins, which are useful probes for investigating voltage-dependent sodium channels of excitable tissues. The mu-conotoxins are present in the venom of the piscivorous marine snail, Conus geographus L. We have purified seven homologs of the mu-conotoxin set and determined their amino acid sequences, as follows, where Hyp = trans-4-hydroxyproline. GIIIA R.D.C.C.T.Hyp.Hyp.K.K.C.K.D.R.Q.C.K.Hyp.Q.R.C.C.A-NH2 [Pro6]GIIIA R.D.C.C. T.P.Hyp.K.K.C.K.D.R.Q.C.K.Hyp.Q.R.C.C.A-NH2 [Pro7]GIIIA R.D.C.C.T.Hyp.P.K.K.C.K.D.R.Q.C.R.Hyp.Q.R.C.C.A-NH2 GIIIB R.D.C.C.T.Hyp.Hyp.R.K.C.K.D.R.R.C.K.Hyp.M.K.C.C.A-NH2 [Pro6]GIIIB R.D.C.C.T.P.Hyp.R.K.C.K.D.R.R. C.K.Hyp.M.K.C.C.A-NH2 [Pro7]GIIIB R.D.C.C.T.Hyp.P.R.K.C.K.D.R.R.C.K.Hyp.M.K.C.C.A-NH2 GIIIC R.D.C.C.T.Hyp.Hyp.K.K.C.K.D.R.R.C.K.Hyp.L.K.C.C.A-NH2. Using the major peptide (GIIIA) in electrophysiological studies on nerve-muscle preparations and in single channel studies using planar lipid bilayers, we have established that the toxin blocks muscle sodium channels, while having no discernible effect on nerve or brain sodium channels. In bilayers the blocking kinetics of GIIIA were derived by statistical analysis of discrete transitions between blocked and unblocked states of batrachotoxin-activated sodium channels from rat muscle. The kinetics conform to a single-site, reversible binding equilibrium with a voltage-dependent binding constant. The measured value of the equilibrium KD for GIIIA is 100 nM at OmV, decreasing e-fold/34 mV of hyperpolarization. This voltage dependence of blocking is similar to that of tetrodotoxin and saxitoxin as measured by the same technique. The tissue specificity and kinetic characteristics suggest that the mu-conotoxins may serve as useful ligands to distinguish sodium channel subtypes in different tissues.
Elsevier