Disruption of redox homeostasis in tumor necrosis factor-induced apoptosis in a murine hepatocyte cell line

RH Pierce, JS Campbell, AB Stephenson… - The American journal of …, 2000 - Elsevier
RH Pierce, JS Campbell, AB Stephenson, CC Franklin, M Chaisson, M Poot, TJ Kavanagh…
The American journal of pathology, 2000Elsevier
Tumor necrosis factor (TNF) is a mediator of the acute phase response in the liver and can
initiate proliferation and cause cell death in hepatocytes. We investigated the mechanisms
by which TNF causes apoptosis in hepatocytes focusing on the role of oxidative stress,
antioxidant defenses, and mitochondrial damage. The studies were conducted in cultured
AML12 cells, a line of differentiated murine hepatocytes. As is the case for hepatocytesin
vivo, AML12 cells were not sensitive to cell death by TNF alone, but died by apoptosis when …
Tumor necrosis factor (TNF) is a mediator of the acute phase response in the liver and can initiate proliferation and cause cell death in hepatocytes. We investigated the mechanisms by which TNF causes apoptosis in hepatocytes focusing on the role of oxidative stress, antioxidant defenses, and mitochondrial damage. The studies were conducted in cultured AML12 cells, a line of differentiated murine hepatocytes. As is the case for hepatocytesin vivo, AML12 cells were not sensitive to cell death by TNF alone, but died by apoptosis when exposed to TNF and a small dose of actinomycin D (Act D). Morphological signs of apoptosis were not detected until 6 hours after the treatment and by 18 hours ∼50% of the cells had died. Exposure of the cells to TNF+Act D did not block NFκB nuclear translocation, DNA binding, or its overall transactivation capacity. Induction of apoptosis was characterized by oxidative stress indicated by the loss of NAD(P)H and glutathione followed by mitochondrial damage that included loss of mitochondrial membrane potential, inner membrane structural damage, and mitochondrial condensation. These changes coincided with cytochrome C release and the activation of caspases-8, -9, and -3. TNF-induced apoptosis was dependent on glutathione levels. In cells with decreased levels of glutathione, TNF by itself in the absence of transcriptional blocking acted as an apoptotic agent. Conversely, the antioxidant α-lipoic acid, that protected against the loss of glutathione in cells exposed to TNF+Act D completely prevented mitochondrial damage, caspase activation, cytochrome C release, and apoptosis. The results demonstrate that apoptosis induced by TNF+Act D in AML12 cells involves oxidative injury and mitochondrial damage. As injury was regulated to a larger extent by the glutathione content of the cells, we suggest that the combination of TNF+Act D causes apoptosis because Act D blocks the transcription of genes required for antioxidant defenses.
Elsevier