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Protection versus uncontrolled inflammation: 
first responders and resolution
New evidence indicates that uncontrolled inflammation is a 
prominent component of many common diseases, including well-
known inflammatory diseases such as arthritis and periodontal 
disease as well as inflammatory bowel disease, cardiovascular 
disease, the neurodegenerative diseases Alzheimer’s and Parkin-
son’s, asthma, cancer, metabolic syndromes (e.g., obesity), dia-
betes, and autoimmune diseases (https://www.cdc.gov). In each, 
peripheral blood markers of inflammation are present and elevated  
(1). Aging and proinflammatory nutrition (2, 3) also contribute to 
increases in inflammatory markers. Thus, the impact of uncon-
trolled inflammation on the United States alone is estimated in 
hundreds of millions of dollars for each disease, with substantial 
increases by 2030 — certainly, epidemic proportions.

The acute inflammatory response is protective. Among the 
first responders, neutrophils (polymorphonuclear leukocytes 
[PMNs]) leave postcapillary venules to phagocytize microbes 
and cellular debris (4). PMNs neutralize and clear invaders; 
however, when excess PMNs congregate or swarm in tissues 

(5), they can inadvertently release their antimicrobial arma-
mentarium via frustrated phagocytosis or cell death (4, 6), lead-
ing to tissue damage that amplifies inflammation and continues 
to chronicity. PMN-driven inflammation is a unifying mecha-
nism for many diseases and reperfusion second-organ injury 
(4). Hence, it is critical to appreciate mechanisms and special-
ized mediators (7) involved in resolution and whether we can 
use these to control inflammation.

In health, acute inflammatory response(s) are self-limited, as 
in surgery-induced tissue injury, in that they resolve on their own 
and classically divide into initiation and resolution phases (4). To 
date, we view acute inflammation as a temporal crescendo to res-
olution and decrescendo of initiating chemical mediator gradients 
(7). In resolution (Figure 1), the host response is active (7) and 
not simply a passive dilution of proinflammatory mediators (8), 
enabling tissues to restore function (4). Lipoxins biosynthesized 
from arachidonic acid are potent, active stop signals for PMN infil-
tration (9, 10) and are produced during resolution of self-limited 
inflammatory responses (11, 12).

While current treatments for inflammation can be effective, 
many eventually become immunosuppressive opportunities for 
infection. Chemical mediators such as prostaglandins phys-
iologically mediate the cardinal signs of inflammation (color, 
rubor, tumor, dolor) and are effectively controlled by tradi-
tional NSAIDs (13); however, NSAIDs are not without unwanted  
side effects. Given the significant public health impact of 
inflammation-associated diseases, it is paramount to seek new 
treatments and mechanisms controlling inflammation and col-
lateral tissue damage from excessive PMN swarming (5). In 
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compared human pleural and PMN-rich 
exudates to time course studies from mouse 
air-pouch exudates and their resolution. We 
found a temporal lipid mediator class switch 
(11) where cyclooxygenase-derived prosta-
glandin E2 (PGE2) antecedes biosynthesis 
of lipoxins. Human PMNs exposed to PGE2 
or PGD2 induced 15-lipoxygenase (15-LOX) 
switching phenotype from LTB4 production 
to lipoxin production, which is a PMN stop 
signal that limits further recruitment (11). 
This PMN phenotype switch marks the reso-
lution phase, because lipoxin A4 (LXA4) also 
stimulates macrophage efferocytosis (phago-
cytosis of apoptotic PMNs and debris) (6, 7, 
18, 19). Using lipid mediator metabololipid-
omics, proteomics (liquid chromatography–
tandem mass spectrometry [LC-MS/MS]), 
and cell trafficking in self-limited exudates, 
we identified three new families of media-
tors (9, 22–24), coined “resolvins” (short for 
resolution phase interaction products), “pro-
tectins,” and “maresins” (short for macro-
phage mediators in resolving inflammation) 
(25). Each is structurally distinct (Figure 2), 
biosynthesized from eicosapentaenoic acid 
(EPA), docosapentaenoic acid (n-3DPA), or 
docosahexaenoic acid (DHA) (7, 23, 26, 27). 
EPA-derived 18-HEPE and 15-HEPE are pro-
duced by hypoxic vascular endothelial cells 
and reduce PMN transendothelial migration, 
but are less potent than resolvin E1 (RvE1) or 
15-epi-LXA5 (9). Diapedesis or transendo-
thelial migration is the committed step for 
PMN recruitment to inflamed sites (4). Both 
18-HEPE and RvE1 are antiinflammatory, 
stopping PMN migration and stimulating  
resolution (9). Aspirin triggers their biosyn-
thesis (Figure 2), and acetaminophen and 
indomethacin also permit 18-HEPE produc-
tion, whereas selective cyclooxygenase-2  
(COX-2) inhibitors block 18-HEPE produc-
tion. These findings provided new mech-

anism(s) for aspirin’s well-appreciated benefits (19, 28). It was 
deemed critical to establish defining criteria for pro-resolving 
actions to qualify and validate these new molecules to direct eluci-
dation of biosynthesis and structure (Table 1).

In addition to biosynthesis of lipoxins and their aspirin- 
triggered 15-epimeric forms (reviewed in ref. 19), newer n-3 
PUFA-derived bioactive metabolomes for resolvins, protectins, 
and maresins (7) are depicted in Figure 2. Because each family 
member possesses potent pro-resolving and antiinflammatory 
actions (recently reviewed in refs. 7, 29) with special functions 
in the resolution phase (Table 1), this superfamily is coined “spe-
cialized pro-resolving mediators” (SPMs). Each carries defining 
biological functions with cell type– and organ-specific properties, 
reflecting stereospecific activation of cellular receptors (30). The 

this mini-series Review, we briefly address active endogenous 
resolution programs and novel resolution mediators as promis-
ing terrain for new therapeutic approaches (7) that would serve 
as immunoresolvents rather than immunosuppressants (14) 
— namely, pro-resolving agonists that stimulate resolution as 
pharmacologic agents (7, 15–18). We provide here a brief over-
view and update with key points from recent advances to com-
plement other in-depth reviews (7, 15–17, 19, 20).

Specialized novel mediators in resolution
Chemical mediators govern cellular traffic, and those derived 
from essential polyunsaturated fatty acids (PUFAs) are most 
potent. Leukotriene B4 (LTB4) is a chemoattractant (21) and main 
mediator of PMN swarming (5). Using a systems approach, we 

Figure 1. Acute inflammatory response and its ideal outcome: complete resolution. (A) Temporal 
lipid mediator class-switching initiates active resolution and SPM biosynthesis. Defined steps in 
the acute inflammation time course: edema, PMN infiltration, and then non-phlogistic monocyte- 
macrophage recruitment to inflammatory exudates. The reduction in PMN number coincides with 
the exudate appearance of SPMs and with the biosynthesis of lipoxins, resolvins (E- and D-series), 
protectins, and maresins in resolving exudates. (B) Each family of SPMs is structurally distinct and 
possesses potent pro-resolving actions.
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like aspirin, changes the enzyme’s catalysis to produce predomi-
nantly R-epimer–containing intermediates, exemplified by novel 
13-series resolvins (RvTs) from vascular n-3DPA (26). The complete 
stereochemistry and biosynthesis of each SPM are established (32–
43), as are epoxy-intermediates of maresins and protectins (36).

Resolvins are produced from DHA, n-3DPA, and EPA (Figure 
2), marine oils that enter humans via nutrition or supplementation 
(3). The term “resolvin” refers to the unique structures, temporal 
code in biosynthesis during resolution, and potent pico-nanogram 

main biosynthesis routes were each confirmed via trapping of 
intermediates and label-tracking of precursors and intermediates. 
In addition to lipoxygenase-initiated pathways that produce medi-
ators with alcohols, e.g., PD1/NPD1 or D-series resolvins (RvDs) 
in predominantly 17S configuration, aspirin acetylation of COX-2 
produces inter mediates in the R configuration at the 17-carbon posi-
tion, giving 17R epimers or 17R-PD1 and RvDs, coined as aspirin- 
triggered protectin and resolvin mediators (23, 31). SPM R-epimers 
are longer-acting. Statins also lead to COX-2 S-nitrosylation that, 

Figure 2. SPM network biosynthetic metabolomes. Network illustration of the enzymes, intermediates, and precursors of the SPM superfamily’s biosyn-
thesis from omega-3 PUFA. Deficiencies in the fatty acid desaturase (Fads) gene cluster reduce SPM production (194). Stereochemistry of each major SPM 
is established; for detailed mechanisms in biosynthesis and complete SPM nomenclature of each endogenous molecule, see refs. 36, 39, 41–43, and 58 
and those within.
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ducing an 18-hydroxy-5(6)-epoxide via LTA4  
hydrolase that is converted to RvE1, and 
5-LOX converts 18-HEPE to RvE2; RvE1 
and RvE2 each potently stimulate IL-10 and 
phagocytosis (38, 51).

RvD1–RvD6 are biosynthesized in exudates 
and by human PMNs and macrophages (23, 
52) via two separate allylic epoxide-containing 
intermediates (Figure 2). RvD1 and RvD2 are 
biosynthesized from a 17-hydroperoxy product 
of 15-LOX with substrate DHA. This interme-
diate is converted to either 7(8)-epoxytetraene- 
intermediate or RvD5 via 5-LOX (35). RvD2 
also carries potent organ-protective actions 
and enhances bacterial killing/clearance (53). 
RvD1 protects from PMN-mediated reperfu-
sion organ injury (54). In exudates, RvD1 and 
RvD2 appear in the onset of resolution fol-
lowed by RvD3 and RvD4 from a 4(5)epoxide- 
intermediate (14, 55, 56). Each stereochemistry 
is confirmed (14, 39, 55–57).

Protectin biosynthesis and maresin bio-
synthesis (Figure 2) each proceed via epoxide 
intermediates critical to attain the stereochem-
istry of their potent mediators (58). Protectin 
D1 (PD1) is enzymatically produced by human 
leukocytes from 16(17)epoxide-intermediate 

(34). In addition to PMNs, macrophages (34, 52) and eosinophils 
(59, 60) produce PD1, and its production is reduced in patients with 
severe asthma (61, 62). The double lipoxygenase product 10,17- 
diHDHA is obtained by two sequential steps with reduction of 
hydroperoxide-intermediate(s) giving 10S,17S-diHETE (34) coined 
PDX, an isomer of PD1, which has several actions (63–66) but whose 
receptor remains unknown. PD1 when produced in neural systems 
is termed neuroprotectin D1 (NPD1/PD1) and demonstrates potent 
protective actions in retina, brain, and pain (67, 68).

Maresin biosynthesis is initiated at carbon-14 via human 
12-LOX (25, 69), producing a 13(14)epoxide-intermediate (eMaR) 
that stimulates M1 conversion to M2 macrophages and blocks 
LTA4 hydrolase (70). The stereochemistry of the products maresin 
1 (MaR1) and MaR2 is established, with actions in pain and tissue 
regeneration (33, 70).

Substrate flow. Resolving secretory phospholipases, sPLA2-
IID and sPLA2-III, release DHA and n-3DPA from phospholipids 
with selectivity for SPM production (71). Microparticles are also 
a source of SPM precursors, e.g., 17-HDHA released via sPLA2 
(52, 72). These substrates are taken up via nutrition and ester-
ified into phospholipids. The ratio of n-3 to n-6 is currently used 
to mark human levels of omega-3 fatty acids obtained from algae 
and marine organisms as potential membrane sources of SPMs 
(3, 73, 74). Omega-3 fatty acids were thought to block coagulation;  
however, doses up to 10 g/d EPA and DHA or consumption of 1.5 
g/d for 52 weeks by cancer or ICU patients were found to be safe 
and without adverse bleeding (75). During resolution of inflamma-
tion, non-esterified substrates also flow into exudates via edema 
carried by proteins (54), which appears to be the major substrate 
form supplied to the brain (76).

ability to counterregulate proinflammatories and actively promote 
resolution via monocyte/macrophage uptake of debris, apoptotic 
PMNs, and killing/clearing microbes (23, 37, 38). RvEs from EPA 
(18-HEPE, RvE1, RvE2, and RvE3) have four main bioactive medi-
ators, biosynthesized as either 18R or 18S epimers (38) with activity 
in pico-nanogram ranges that is not shared by their precursor EPA. 
RvE1 downregulates leukocyte adhesive molecules (i.e., CD11/
CD18) and ADP-dependent platelet activation (44, 45). RvE1 pro-
motes PMN apoptosis to accelerate resolution (46). Human PMN 
RvE2 biosynthesis is enhanced in hypoxia (47), 18-HEPE is cardio-
protective (48), and RvE3 stops PMNs (49). RvE1 reduces dendritic 
cells’ IL-12 production (32) and, in skin, attenuates contact hyper-
sensitivity (50). RvE1 and RvE2 biosynthesis involves 5-LOX, pro-

Table 1. Pro-resolving mediators: defining physiologic actions in 
the signs of resolution
Temporal stereospecific biosynthesis via leukocyte exudate traffic
Cessation of PMN infiltration; stop signals to limit further PMN recruitment and PMN-
mediated tissue damage
Enhancement of macrophage phagocytosis of apoptotic PMNs and cellular debris and 
augmentation of bacteria killing by phagocytes
Actions at both transcriptional and translational level, microRNA
Actions via specific receptors in the pico-nanomolar range in a stereoselective fashion
Shortening of time to resolution (resolution interval Ri) by activation of endogenous 
resolution programs
Resolution and reduction of pain
 

Figure 3. Quantitative definition of exudate resolution and non-resolving inflammation. Hypo-
thetical example of contained self-limited resolving inflammation versus non-resolving inflamma-
tion (red line) to illustrate the quantitative indices and components: ψmax for peak PMN infiltration, 
50% of peak PMN (R50), time point of R50 (T50), and resolution interval (Ri) to quantitate PMN 
influx and removal as well as non-phlogistic recruitment of monocytes-macrophages in exudates, 
which is required for repair and renewed function. See text and refs. 22 and 85 for original results 
and definitions.
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monoxide (89), cyclin-dependent kinase inhibitors (90), annexin 
peptides (91), and others (17). Since these indices were unavail-
able at the time of development, some widely used drugs are now 
recognized as “resolution toxic,” i.e., disrupting active resolution 
programs (20) including NSAIDs and COX-2 inhibitors. These 
antiinflammatories lower PMN amplitude (Ψmax) but lengthen  
resolution interval (Ri) by impairing efferocytosis and/or uncou-
pling PGE2- and PGD2-dependent lipoxygenase expression (11, 
92, 93). Lipoxygenase inhibitors also increase Ri, by decreasing 
SPMs (85), and lidocaine increases Ri by blocking efferocytosis 
(94). In contrast, some widely used drugs stimulate resolution and 
shorten Ri. Distinct from NSAIDs, aspirin decreases Ri by acetyl-
ating COX-2, contributing to production of the R-epimer lipox-
ins, resolvins, and protectins (7, 31). Other common resolution- 
promoting drugs include statins, which increase epimeric SPMs 
(26), and glucocorticoids, which increase annexin A1 (95) and 
apoptosis as well as efferocytosis (20) yet can turn immunosup-
pressive. Hence, resolution indices defined the resolution ago-
nist (Figure 3) properties of resolvins and other SPMs (Figure 
2), which are critical for developing new therapeutics that are  
resolution-friendly. Antiinflammatories clearly have a different 
mechanism of action than immunoresolvents (Table 1).

SPMs promote resolution in sterile versus 
infectious inflammation
Specific SPMs are temporally and differentially regulated during 
infections and sterile tissue responses to injury. With bacterial 
infection, SPMs display anti-phlogistic properties and enhance 
pathogen containment. In contrast to immunosuppression, SPM 
augmentation of host defense lowers antibiotic requirements for 
bacterial clearance. Interestingly, RvD1 and RvD5 reduce bacte-
rial titers in blood and exudates, in part by increasing neutrophil 
and macrophage phagocytosis of bacteria and mediating coun-
terregulation of proinflammatory genes, including those encod-
ing NF-κB and TNF-α (37). Both RvD1 and ciprofloxacin accel-
erate resolution of E. coli infection, shortening Ri; moreover, 
RvD1’s host-directed actions enhance ciprofloxacin’s therapeu-
tic effects (37, 96). RvD2 is another potent immunoresolvent that 
is biosynthesized during active tissue resolution programs (53). In 
both E. coli and Staphylococcus aureus infections, RvD2 limits neu-
trophil infiltration and enhances phagocyte clearance of bacteria 
(97). In addition to regulating neutrophil responses to infection, 
RvD2 mediates protection from neutrophil-initiated second- 
organ injury. After sterile injury from ischemia/reperfusion, RvD2 
gives marked organ protection with decreased neutrophil infiltra-
tion to lungs. In this model, RvD2 administration increases tissue 
levels of other SPMs in a receptor-mediated manner to propel a 
positive-feedback loop for resolution (97).

In addition to leukocyte-mediated injury “from within,” 
sterile direct tissue injury by extrinsic means evokes a resolution 
response in health. In mouse lung injury from gastric acid aspi-
ration, SPM production is temporally regulated with early MaR1 
and later RvD1 and RvD3 (98–100). Intravenous administration of 
MaR1, RvD1, or RvD3 after intrabronchial acid dampens the max-
imal extent of acute lung inflammation and promotes a more rapid 
return to homeostasis. RvD1 also protects tissue after hyperoxic 
lung injury, decreasing oxidative stress and NF-κB. SPMs, includ-

While appreciated as an intermediate in n-3 PUFA biosynthe-
sis in humans, n-3DPA conversion to DHA appears to be greater in 
women than men supplemented with α-linolenic acid (77). n-3DPA 
is also a precursor to SPMs, carrying 22 carbons with 5 double 
bonds (denoted C22:5; Figure 2) as opposed to 6 in DHA (C22:6) 
(27). These n-3 immunoresolvents are biosynthesized (Figure 2) in 
three families: resolvinn-3DPA, protectinn-3DPA, and maresinn-3DPA, each 
demonstrating potent pro-resolving actions (27) in human sub-
jects (78). Rapid advances in the organic synthesis of SPMs from 
n-3DPA and their matching to endogenous mediators (36, 79) facil-
itated demonstration of potent protection by protectin D1n-3DPA and 
resolvin D5n-3DPA in colitis (80). Human and mouse tissues treated 
with the statin atorvastatin convert n-3DPA to RvTs (26). RvTs are 
organ-protective, enhance phagocytosis and bacterial killing, and 
regulate inflammasome components. This mechanism involves 
COX-2 S-nitrosylation and transcellular RvT biosynthesis via 
PMN–endothelial cell interactions that accelerate resolution; RvTs 
are produced in healthy subjects (26). RvTs activate protective host 
responses to resolve infection-initiated inflammation (26) and, like 
resolvins and protectins (58, 81), uncover a potential approach to 
develop host-directed therapies (82).

In addition to transcellular mechanisms, SPM biosynthesis 
proceeds via HDL interactions with macrophages (83), producing 
LXB4 and RvE2 from healthy subjects. Macrophages also produce 
SPMs when interacting with apoptotic PMNs (52) and pro-resolving 
microparticles (72).

Resolution indices: quantitative definitions for 
physiology and pharmacology
Once it was established that lipoxins, aspirin-triggered lipoxins, 
and their synthetic analogs are antiinflammatory (7, 81), a quan-
titative definition of resolution was needed to account for cellu-
lar and molecular mechanisms of novel pro-resolving mediators, 
because resolution was described only by histology (4, 84). This 
was critical because in self-limited inflammation, the ideal out-
come is resolution, a highly coordinated and active process con-
trolled by pro-resolving mediators (84). In addition to pinpointing 
SPM biosynthesis and actions (Figure 3), resolution indices can 
also dissect the impact of drugs and infection. Charles Serhan’s 
laboratory introduced quantitative resolution indices focusing on  
exudate PMNs and macrophages. Quantitation of PMN infiltra-
tion, subsequent clearance by apoptosis and efferocytosis, and 
non-phlogistic monocyte/macrophage recruitment, including 
their magnitude, duration, and loss from exudates (22, 85), gave 
birth to the resolution interval (Ri, time interval from maximum 
PMN influx point Ψmax to 50% reduction R50, i.e., T50 – Tmax; Figure 
3). Resolution indices defined inflammatory catabasis using tem-
poral lipidomics, proteomics, and flow cytometry to establish rela-
tionships between eicosanoids, SPMs, and chemokines/cytokines, 
as well as potential resolver or protein resolution activators (22, 
37, 85). Among the identified resolver proteins are annexin A1 and 
annexin I–derived peptides that stimulate resolution (17).

SPMs shorten Ri both by lowering the amplitude of PMN 
influx (Ψmax) and by stimulating clearance by efferocytosis and 
phagocytosis, microbe killing, and containment (14, 37, 86). 
These indices permitted assignment of roles of additional reso-
lution agonists such as erythropoietin (87), plasmin (88), carbon 
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ing RvD1 and MaR1, can also shorten Ri for lung injury by increas-
ing macrophage heme oxygenase-1 (89, 101). In these models, 
SPMs mediate protection via several cellular and organ-level 
mechanisms, including decreasing neutrophil trafficking and acti-
vation, increasing macrophage phagocytosis and efferocytosis, 
accelerating restitution of epithelial barrier integrity, and enhanc-
ing edema clearance (102).

SPMs in transitions between innate and 
adaptive immunity
Beyond innate phagocyte responses to resolve acute inflamma-
tion, SPMs appear to play critical roles in regulating adaptive 
immunity. While homeostatic adaptive immune responses are 
targeted, pathologic adaptive inflammation can become overly 
exuberant or chronic and nonresolving. SPMs selectively regulate 
cytokines via SPM receptors expressed on innate lymphoid, NK, T, 
and B cells. In type 2 innate lymphoid cells, SPMs decrease proin-
flammatory type 2 cytokine production but increase amphiregulin 
expression for mucosal protection (103, 104). Cytotoxic properties 
of NK cells can promote granulocyte apoptosis for their clearance, 
a resolution mechanism augmented by SPMs (103). RvD1 and 
RvD2 control CD4+ T cell differentiation into Th1 and Th17 effec-
tors with decreased production of the lineage-specific cytokines 
IFN-γ (Th1) and IL-17 (Th17) and their transcription factors T-bet 
and RORc (105). SPMs also decrease production of IL-2, IFN-γ, 
and TNF-α by CD8+ T cells.

To regulate adaptive responses, SPMs such as MaR1 promote 
de novo generation of FoxP3-expressing regulatory T cells from 
naive CD4+ T cells as well as TGF-β and amphiregulin expression 
(104). SPMs have an adjuvant effect on B cells, enhancing humoral  
immunity. SPMs increase IgM and IgG production from acti-
vated human B cells with differentiation toward a CD27+CD38+  
antibody-secreting cell phenotype (106). Also, SPMs target B 
cell epsilon germline transcript to selectively inhibit IgE without 
decreasing IgM and IgG or IgA production (107).

SPM receptors and intracellular signaling
To mediate cell type–specific actions, SPMs principally serve as 
ligands for select surface receptors. To date, four human SPM 
receptors are identified: ALX/FPR2, ERV1, DRV1, and DRV2. 
While named for the ligand used for identification (LXA4, RvE1, 
RvD1, and RvD2, respectively), each receptor is capable of inter-
acting with additional SPMs (30). RvD1, for example, inter-
acts with ALX/FPR2 and DRV1 in a context-specific manner. In 
response to an inflammatory stimulus, neutrophils rapidly mobi-
lize ALX/FPR2, but not DRV1, from secretory granules to cell 
membranes, so RvD1 interacts with DRV1 for homeostatic func-
tions and with ALX/FPR2 for antineutrophil actions in resolving 
inflammation (108, 109). Notably, in some instances, SPMs dis-
play receptor-level antagonism at pro-phlogistic receptors. This 
antagonism is exemplified by inhibition of interactions of LTB4 
with its receptor BLT1 by RvE1 and MaR1 (110, 111).

ALX/FPR2 receptors are broadly expressed and engaged by 
SPMs and peptides at distinct domains to influence intracellular 
signaling and cell functional responses. Interestingly, the acute-
phase protein serum amyloid A (SAA) can engage ALX/FPR2 
receptors (112). When the counter-ligand is present in excess, 

SAA and the SPM ligands allosterically inhibit each other to bias 
ALX/FPR2 signaling to promote either inflammation (SAA) or res-
olution (SPM) (113), suggesting a pivotal role for these receptors 
in the temporal course of an inflammatory response. ALX/FPR2 
receptors can dimerize to alter ligand-dependent intracellular 
signaling (114). SAA interactions with ALX/FPR2 decrease for-
mation of homodimers. In contrast, SPM engagement increases  
both ALX/FPR2 homodimerization and heterodimerization 
with FPR1 receptor. ALX/FPR2-FPR1 heterodimers have distinct 
downstream signaling events, with phosphorylation of the JNK/
caspase-3 pathway and proapoptotic signaling pathways.

LXA4 can also serve as an endogenous allosteric regulator of 
the endocannabinoid receptor CB1 (115). ERV1 receptors are also 
able to interact with both peptide and lipid ligands, chemerin and 
RvE1, respectively (32). As with ALX/FPR2, peptide and SPM sig-
naling events by this receptor have distinct patterns of activation 
for intracellular pathways, including ERK and NF-κB phosphory-
lation (46). SPM interactions with ALX/FPR2 and ERV1 decrease 
NF-κB activity and cytokine production (46, 116). Translocation of 
NF-κB to the nucleus and its activity are also regulated by SPM sig-
naling at DRV1 and DRV2 (97, 100, 117). In another feed-forward 
mechanism for resolution, SPM receptor signaling by one mediator 
can promote expression of additional SPMs for other SPM recep-
tors, exemplified by RvE1-ERV1 signaling promoting increased 
biosynthesis of LXA4 for ALX/FPR2-mediated resolution of aller-
gic lung inflammation (118), and RvD2-DRV2 induction of RvD5 
and PD1 for resolution of ischemia/reperfusion injury (37).

SPM receptor activation of intracellular signaling is cell type– 
and organ-specific; however, a few common themes emerge from 
existing results. Distinct ligand binding can influence receptor 
dimerization with alternate patterns of intracellular signal cou-
pling to evoke specific phosphorylation cascades (114), polyiso-
prenyl phosphate remodeling (119), and microRNA expression 
patterns that together dictate cellular functional responses. Also, 
resolvin receptor activation signals specific microRNAs that carry 
sustained tissue responses (120–122).

Neural systems and arthritic pain
Human brain tissues produce RvD1, PD1, and MaR1 (123, 124). 
LXA4, MaR1, RvD1, NPD1, and PDX show neuroprotective activi-
ties. MaR1 and RvD1 downregulate β-amyloid–initiated inflamma-
tion with human microglia, suggesting a role for SPMs in neural 
tissues (123). MaR1 stimulates phagocytosis of the amyloid pep-
tide Aβ42 (123), as does RvD1 (125) with lower SPM levels in Alz-
heimer’s disease (126). MaR1 is neuroprotective in murine spinal 
cord injury, enabling functional recovery (127). DHA and NPD1 
are neuroprotective in the retina (128), CNS, and brain (68), and 
PD1/NPD1 and resolvins may protect in early-stage Alzheimer’s 
as well as in ischemic stroke (124, 129). Microglial cell production 
of proinflammatory cytokines is selectively reduced by SPMs (23, 
24), with increased production of antiinflammatory IL-10 (130). 
In stress models, RvD1 and RvD2 prevent depression-like behav-
iors, and nanogram doses give sustained antidepressant effects 
(131, 132). Since it was first demonstrated that RvE1 and RvD1 are 
potent in resolving inflammatory and postoperative pain (133, 134) 
and that their receptors can regulate transient receptor potential 
(TRP) ion channels and spinal cord synaptic transmission, addi-
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tional resolvins (RvD2), protectins, and MaR1 (Figure 2) were 
shown to display potent ability to reduce inflammatory pain with-
out altering motor functions or baseline pain (33, 135). RvE1 selec-
tively blocks TRPV1 (IC50 = 1 nM), RvD1 acts via TRPA1 (IC50 = 9 
nM), and RvD2 acts via TRPV1 (IC50 = 0.1 nM) and TRPA1 (IC50 = 
2 nM) (136). RvE1 inhibits substance P actions on peripheral noci-
ceptive neurons (137). AT-RvD1 also mitigates motor and cogni-
tive deficits in diffuse brain injury, and RvE1 increases posttrau-
matic sleep (138).

AT-RvD1 reduces osteoarthritic pain (139), as does precursor 
17-HDHA (140), prompting validation of their receptors (ALX/
FPR2 and ERV/CMKLR1) in rat models of osteoarthritis pain (141). 
Plasma RvD2 levels correlate with reduction in astrogliosis in spinal 
cord (141). Fish consumption by humans, which increases plasma 
SPMs and precursors, reduces rheumatoid arthritis (RA) disease 
activity (142), and omega-3 fatty acid supplementation increases 
18-HEPE and 17-HDHA, as well as RvEs, PD1, PDX, MaR1, and 
RvDs in plasma and synovial fluid (143). In synovial fluids, RvE2 
increases are associated with reduced pain in arthritic patients 
(143). RvD1 and RvD3 are present in human arthritic synovial flu-
ids (144, 145) and are protective in mouse arthritis, suggesting that 
increasing local joint SPMs may reduce RA pain. In human osteo-
arthritis pain, circulating 17-HDHA is associated with lower pain 
scores; however, circulating resolvins were below limits of detec-
tion (146). Vagal stimulation reduces arthritic joint inflammation 
in humans (147), and vagotomy in mice reduces pro-resolving 
mediators (i.e., SPMs, lipoxins, and netrin-1, an axonal guidance 
protein) that stimulate human monocytes to produce resolvins 
and lipoxins. The vagus nerve controls inflammation amplitude 
(147) by regulating SPMs and resolution (148). Acetylcholine from 
the vagus nerve induces 15-LOX-1 in type 3 innate lymphoid cells 
to produce protectins (i.e., PCTR1) that reduce infections (149). 
PCTRs and other new SPM sulfido-conjugates in tissue regenera-
tion and their relation to leukotrienes were recently reviewed (15). 
Hence, plasticity of neural networks and their innate immune sys-
tem interactions are regulated by specific SPMs.

Fish to human resolvin, protectin, and maresin 
production
SPMs can be produced in many human target organs (7). Avail-
ability of SPM synthetic standards, deuterium-labeled SPMs, and 
targeted LC-MS/MS (150) now permits identification of resolvins, 
protectins, and maresins in human tissues. In addition to sub-
strates, trout brain (151) and salmon tissues contain resolvins 
(152), indicating that SPMs are conserved structures in evolution. 
In humans, SPMs are identified in several types of human speci-
mens and biomatrices. PD1 is in exhaled breath condensates (61), 
RvE1 is in plasma (32), and RvD1 and RvD2 are in serum (153, 154). 
Lymph nodes, spleen, and serum possess most species of SPMs 
(150). Human spleen has RvD5, PD1, and MaR1, as well as RvE1, 
RvE2, RvE3, and LXA4; human axillary lymph nodes carry RvD1, 
RvD5, RvD6, RvE3, and lipoxins (150).

Mounting evidence indicates that SPM production is altered 
and often diminished in affected tissues and in circulation across 
a spectrum of chronic inflammatory diseases. In this context, in 
human synovial fluid from RA patients, RvD1, 17-epi-RvD1, RvD2, 
RvD3, RvE1, RvE2, RvE3, PD1, MaR1, 17-HDHA, and 18-HEPE are 

present (143–145), and RvD3 is reduced in serum from RA patients 
(144). RvD1 is sharply reduced in vulnerable regions of human ath-
erosclerotic plaques (155), and, in omental adipose tissue from obese 
patients, RvDs, RvEs, PD1, MaR1, and lipoxins are reduced relative 
to LTB4 and prostaglandins (101). In brain and cerebrospinal fluid 
from Alzheimer’s disease patients, RvD1 and LXA4 are decreased 
(123, 126). Specific SPMs are present in human urine, namely RvD1, 
17-epi-RvD1, and RvE2, which are decreased in smokers (156).

Recently, RvDs, PD1, and lipoxins were identified in human 
emotional tears with sex-specific levels that are reduced in females 
(40). RvDs are present in human skin blisters and increased in 
females (157). Healthy subjects’ recovery phase from strenuous 
exercise is characterized by increases in serum RvD1, RvE1, LXA4, 
and LXB4, which are blocked when subjects are pretreated with 
ibuprofen (93). In patients with chronic daily headaches, dietary 
omega-3 intervention increases plasma resolvins, 17-HDHA, and 
18-HEPE with concomitant reduction in headache pain (158). In 
sepsis, plasma RvE1, RvD5, and 17-epi-PD1 increase in nonsurvi-
vors relative to survivors and are potential biomarkers for critical 
illness (159). At birth, SPMs are present in human umbilical cord 
blood (RvE1, RvE2, RvE3, RvD1, 17-epi-RvD1, RvD2, 17-HDHA, 
and 18-HEPE) (160, 161), and placenta carries RvD1, 17-epi-RvD1, 
RvD2, PD1, 17-HDHA, and 18-HEPE (162). Prenatal n-3 supple-
mentation increases 18-HEPE and 17-HDHA concentrations in 
human maternal and cord blood (160, 163), as well as in placenta 
(163), possibly supporting early immune functions (164). Along 
these lines, human breast milk contains bioactive SPM clusters 
consisting of RvD1, RvD2, RvD3, 17-epi-RvD3, RvD4, PD1, MaR1, 
RvE1, RvE2, RvE3, LXA4, LXB4, 17-HDHA, and 18-HEPE (165, 
166), is a potential source of maternal-infant omega-3 and SPM 
transfer, and links to beneficial maternal n-3 supplementation 
during pregnancy with decreased incidence in children of asthma 
and respiratory infections (167), food allergy, and eczema (164).

Hence, specific SPMs and SPM clusters are present at bio-
logically active amounts in human inflammatory exudates, phys-
iologic tissues, and fluids as demonstrated by targeted LC-MS/
MS–based approaches. In human peripheral blood, several labo-
ratories collectively identified plasma SPMs (38, 168), as well as a 
plasma SPM cluster consisting of RvE1, RvE2, RvD1, 17-epi-RvD1, 
RvD2, RvD5, RvD6, PD1, 17-HDHA, and 18-HEPE (150, 153), and 
a serum cluster of RvD1, 17-epi-RvD1, RvD2, RvD3, PD1, MaR1, 
RvE1, and RvE2. SPM concentrations attained in human periph-
eral blood target PMNs and monocytes (at the single-cell level 
determined by CyTOF mass cytometry) to increase phagocytosis 
and killing of E. coli (116). PUFAs are associated with reduced inci-
dence of fatal coronary heart disease (169, 170), and it has recent-
ly been established that omega-3 supplementation at doses up to 
10 g/d (EPA and DHA) does not increase risk of bleeding or affect 
other coagulation parameters (75).

In human saliva, the leukotriene/RvD1 ratio predicts vascular 
disease (171), and saliva SPMs in aggressive periodontal disease 
may be useful for monitoring disease status (172). Randomized 
trials showed that alcohol consumption increases specific plasma  
SPMs: 18-HEPE, RvD1, and 17R-RvD1 (173). In obese women, 
1.8 g daily EPA and DHA supplementation increased resolvins in  
plasma (174) and in lungs during acute respiratory distress syn-
drome (175). Thus, it appears that in certain organs, dietary n-3 
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(179). An RvE1 analog was successful in human clinical trial for 
dry eye inflammation (180, 181), and another pro-resolving sta-
ble SPM analog is currently in trial for periodontal inflammation 
(182). Several of these molecules are in clinical development pro-
grams. Given the number of SPMs and their potencies in multi-
ple organs, investigation of mimetics and/or metabolically stable 
analogs of SPMs (Figure 2) could reveal their potential in promot-
ing resolution of pathologic inflammation, addressing resolution 
defects that are present in many human diseases.

Therapeutic opportunities for SPM mechanisms
SPMs have proven potent pro-resolving actions in a range of  
disease models (Table 2); given their potency, many drug devel-
opment opportunities are possible. Human PMN swarming acti-
vates a temporal biosynthetic code that produces stop signals, 
e.g., LXA4 and resolvins, at critical PMN densities (183). Temporal 
biosynthesis with lipid mediator class switching is documented  
in hu man blisters (157) and with specific drugs (184) (e.g., dex-
medetomidine) that can prevent cognitive decline by activating  
SPMs (185). In randomized trials, immunonutrition (dietary inter-
ventions that modulate the immune system) increases RvE1 in 
patients undergoing hepatobiliary surgery, giving lower rates of 
infection complications and severity (186). Treating coronary artery 
disease patients with Lovaza resurrects SPM production (187). 
Enhancing SPMs via substrate supplementation may also improve 
outcomes in military personnel and in traumatic brain injury (188). 
Building on the ability of SPMs to clear debris, resolving cancer 
inflammation with RvE1, RvD1, or RvD2 reduces chemotherapy- 
initiated tumor debris and lowers dose requirements for cancer 
drugs (189) by stimulating resolution macrophages (190). West-
ern diet triggers inflammasome-mediated trained immunity with 
heightened inflammation (191). RvT and lipoxin reduce inflam-
masome activation (26, 192), suggesting that SPMs can help 
control obesity (193) and other diseases in which inflammation 
is excessive (Table 2). The recent identification of a third phase 
of acute inflammation that arcs into adaptive immunity (16) sup-
plies new targets and opportunities. In addition to innate immuni-
ty, RvD1, RvD2, and RvE1 target T and B lymphocytes (105, 107), 
widening the scope and potential for SPM-based therapeutics  
and resolution physiology/pharmacology.
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increases tissue SPMs, and that not all SPMs (Figure 2) are pro-
duced in each organ, save resolving exudates. Also, some human 
tissues and fluids, e.g., breast milk, placenta, lymph nodes, lung, 
and tears, may constitutively biosynthesize SPMs, while others, 
such as blood (116) and spleen (176), produce SPMs upon cell acti-
vation. Now that these procedures are available, additional human 
studies are needed to investigate the role of organ-specific SPM 
production and actions in human tissues.

Novel therapeutics: SPM inactivation and 
metabolically stable mimetics
While some resolvins and other SPMs reach circulation (150, 159), 
most are metabolically inactivated at local sites of inflammation 
(168). For example, RvE1 is converted via an eicosanoid oxidore-
ductase (EOR, specifically prostaglandin dehydrogenase) (177) to 
inactive 18-oxo-RvE1. Stable analogs of RvE1 that prevent dehy-
drogenation at carbon-18 are longer-acting, demonstrating potent 
mimetic actions of RvE1 in pain and inflammation (134, 168). 
RvD1 is also subject to dehydrogenation via EOR at carbon-17 
alcohol to inactive 17-oxo-RvD1 (35). Stable RvD1 analogs that 
prevent rapid dehydrogenation at carbon-17 are potent mimetics 
(54). RvD4, RvD5, and MaR1 are also subject to local metabolism 
to oxo-products (37, 56, 111). Nanomedicines were designed that 
deliver SPMs and their analogs (72) and with unidirectional sus-
tained delivery (178). A benzo-RvD1 analog was designed to retain 
RvD1’s pro-resolving actions, requiring fewer steps in organic syn-
thesis by eliminating the tetraene conjugation, which is less potent 

Table 2. SPM immunoresolvents in disease

SPM Disease model Reference
RvE1 Periodontal disease, dysbiosis 195

Lung injury 46
RvE1 Colitis 196

Acid-induced lung injury 102
RvD5, PD1 E. coli infection 37
RvD2 Cecal ligation and puncture sepsis 53, 117
RvD2 Burn wound sepsis 197
RvD3 Aging mice, peritonitis 86
RvD4 Skin inflammation, peritonitis, organ 

protection
56, 57

RvD1, RvD3 Arthritis 144, 145
RvE1, RvD1, and RvD2 Cancer 189, 190, 198, 199
RvE1 Obesity 193
Lipoxins and resolvins Neuroinflammation 120

Postoperative cognitive decline 185
Atherosclerosis 200

Asthma 118
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