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Introduction
Over the past decade, there has been remarkable progress in the 
molecular classification of prostate cancer, with the delineation of 
multiple distinct subclasses defined by recurrent genomic aberra-
tions. Recurrent gene fusions in the oncogenic transcription factor 
ERG, present in 40% to 50% of prostate cancers, define one such 
subclass, while a second distinct class, comprising 10% of prostate 
cancers, is defined by recurrent mutations in SPOP (1, 2). SPOP 
mutations and ERG rearrangements show near complete mutu-
al exclusivity across multiple independent cohorts representing 
thousands of prostate cancer samples (1, 3–5).

SPOP encodes the substrate recognition component of a 
CUL3-based E3 ubiquitin ligase. Recent reports demonstrated 
that the SPOP-CUL3 complex can act as a ubiquitin ligase for ERG 
(6, 7). These studies present compelling biochemical evidence, 
using in vitro models, that SPOP can interact with ERG, facilitate 

its ubiquitination, and promote degradation in a degron-specific 
manner. One of the conclusions of these studies is that mutual 
exclusivity between SPOP mutation and ERG rearrangement is 
due to functional redundancy, and that ERG stabilization is a crit-
ical downstream mediator of the oncogenic effects of SPOP muta-
tion in prostate cancer (6–8).

Here, we test this hypothesis using human prostate can-
cer specimens and genetically engineered mouse models of 
SPOP-mutant prostate cancer. Our data demonstrate that in both 
human cancer specimens and mouse models where SPOP muta-
tion drives prostate neoplasia, ERG is not expressed, and we see 
no evidence of activation of ERG target genes. Taken together, our 
findings argue against SPOP mutation and ERG rearrangement as 
functionally redundant events.

Results and Discussion
Murine SPOP-driven prostate cancer does not express ERG. We 
recently reported that mice expressing SPOP-F133V in the pros-
tate display a high prevalence of high-grade prostatic intraepi-
thelial neoplasia (HG-PIN) with striking nuclear atypia in com-
bination with conditional heterozygous Pten loss (PtenL/+), which 
has a minimal phenotype by itself (9). SPOP-F133V in combina-
tion with homozygous Pten deletion (PtenL/L) (which on its own 
results in diffuse HG-PIN), develop highly prevalent invasive 
prostate adenocarcinoma (9).

To determine the role of ERG in phenotypes observed in 
SPOP-mutant mouse models, we examined ERG protein expres-
sion by immunohistochemistry (IHC) using a well-characterized 
antibody (10). We did not observe ERG expression in histological-
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online with this article; https://doi.org/10.1172/JCI96551DS1), 
which was heterogeneous (2 out of 3 cores ERG positive).

Another central tenet of the hypothesis that SPOP stabilizes 
ERG in human prostate cancer is that baseline levels of ERG protein 
are present that accumulate in the presence of mutant SPOP. How-
ever, multiple studies have suggested that in the absence of gene 
fusion, ERG is not expressed in benign prostate cells (10–13). As seen 
in Figure 3C, ERG mRNA is expressed below levels that are generally 
considered adequate for expression in SPOP-mutant cancer.

The studies by Gan et al. and An et al. have also suggested that 
ERG- and SPOP-mutant cancers share similar gene expression 
signatures (6, 7). We examined the overlap of signatures from The 
Cancer Genome Atlas (TCGA) by analyzing whether expression 
similarities between SPOP-mutant and ERG-rearranged tumors 
were unique to these tumor types, or rather represented a tumor 
versus normal signature. As seen in Figure 4A, virtually all of the 
overlap in gene signatures was accounted for by this tumor ver-
sus normal signature. Only 3 genes overlapped between SPOP- 
mutant and ERG-fusion signatures that were not incorporated in 
the tumor versus normal signature.

We next sought to determine if SPOP-mutant organoids, which 
recapitulate the human SPOP-mutant signature (9), expressed ERG 

ly normal prostate epithelial cells (Rosa26SPOP-F133V Pten+/+ Pb-Cre) 
where SPOP-F133V, marked by GFP expression, is expressed (Fig-
ure 1A). As expected, ERG was readily detectable in endothelial 
cells (Figure 1A). In Rosa26SPOP-F133V PtenL/+ Pb-Cre mouse prostates 
with HG-PIN driven by SPOP mutation (9), we again saw no evi-
dence of ERG protein expression by IHC (Figure 1B). Similarly, 
in Rosa26SPOP-F133V PtenL/L Pb-Cre mouse prostates, in which SPOP 
mutation drives prostatic adenocarcinoma, ERG was not detect-
able by IHC in prostate cells expressing mutant SPOP (Figure 1C).

We next determined if SPOP mutation increased ERG expres-
sion in prostate organoids from Rosa26SPOP-F133V PtenL/+ T2-Cre 
mice. When mutant SPOP was expressed following induction with 
tamoxifen, we saw no evidence of ERG expression when assessed 
by IHC, immunofluorescence, or Western blot (Figure 2, A–C).

ERG overexpression does not drive human SPOP-mutant pros-
tate cancer. A critical component of the studies defining ERG as 
deregulated by SPOP mutation was the demonstration of human 
prostate cancers harboring both SPOP mutation and ERG protein 
overexpression. We identified 22 SPOP-mutant prostate cancer 
samples and examined ERG expression by IHC. Only one of these 
cancers expressed detectable ERG by IHC (Figure 3, A and B, and 
Supplemental Figure 1, A and B; supplemental material available 

Figure 1. SPOP mutation does not 
result in ERG protein expression 
by immunohistochemistry in 
normal or neoplastic murine 
prostate. (A) Histologically normal 
prostate from mice conditionally 
expressing SPOP-F133V in the 
prostate (Rosa26SPOP-F133V Pten+/+ 
Pb-Cre). A and B scale bars: 50 μm. 
(B) SPOP-mutation-driven murine 
HG-PIN (Rosa26SPOP-F133V PtenL/+ 
Pb-Cre). (C) SPOP-mutation-driven 
murine prostate adenocarcinoma. 
(Rosa26SPOP-F133V PtenL/L Pb-Cre). 
Insets show ERG staining in endo-
thelial cells (arrow) adjacent to 
SPOP-mutant-expressing prostate 
cells. SPOP-F133V transgenic 
expression confirmed by GFP 
expression. A minimum of 3 mice 
were utilized for each condition. 
Representative sections are 
shown. Scale bars: 50 μm in right 
images of C, 500 μm in left and 
center images of C.
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did identify one tumor in which both SPOP mutations and ERG 
protein expression were detected, this tumor had a marginal level 
of ERG expression that was present only in 2 of 3 tumor cores. This 
heterogeneity is not surprising, as prostate cancer is generally a 
multifocal disease, with the vast majority of glands at radical pros-
tatectomy containing more than one cancer focus (14, 15). Hetero-
geneity, and the innate challenges of sampling human prostate 
cancers, can confound analyses of cooccurrence of molecular 
events. As stated above, it is possible that 2 clonally distinct foci 
of prostate cancer, with distinct molecular features, can spatially 
comingle (16). These so-called collision tumors are relatively com-
mon in prostate cancer, and complicate interpretation of molec-
ular characterization. We have previously shown detailed charac-
terization (using microdissection) on one such cancer, where an 
SPOP-mutant cancer collided with an ERG-expressing tumor (3). 
This alternative hypothesis should be ruled out before concluding 
that mutually exclusive events, like SPOP mutation and ERG pro-
tein expression, are occurring in the same cells.

Clonality and in situ studies support both ERG rearrangement 
and SPOP mutation as early events in the natural history of pros-
tate cancer (2, 3, 17). Whether these mutations affect downstream 
prostate cancer progression is unclear (2, 17). ERG-positive tumors 
have been reported to be associated with younger age and lower 

transcriptional signatures. We saw that SPOP-mutant organoids 
do not cluster according to ERG-mutant signatures (Figure 4B). 
Similarly, ERG-mutant mouse prostates and human tumors do not 
cluster according to SPOP-mutant signatures (Figure 4C). Indeed, 
when clustered within prostate cancers, SPOP-mutant cancers clus-
ter closer to non–SPOP-, non–ERG-rearranged cancers than ERG- 
rearranged cancers (Figure 4D and Supplemental Table 1).

Mutually exclusive genomic events can represent several types 
of functional interactions, including synthetic lethality, biological 
divergence, or functional redundancy. Here, we present evidence 
against ERG stabilization downstream of SPOP mutation being an 
important carcinogenic mechanism in prostate cancer. Using in 
vivo and in vitro models, we show that expression of SPOP-F133V, 
the most commonly mutated residue in prostate cancer, results in 
no detectable ERG protein expression in prostate cells. This is the 
case even in contexts where SPOP-F133V drives clear oncogenic 
phenotypes (9). We also see no evidence of stabilization of trans-
genic ERG by SPOP-F133V in these contexts. These data strongly 
argue against stabilization of ERG as a critical downstream medi-
ator of the effects of mutant SPOP in prostate cancer.

In human cancers, consistent with prior reports, we show that 
the vast majority of SPOP-mutant tumors show no evidence of 
ERG protein expression. While we, as well as the previous studies, 

Figure 2. Murine prostate organoids expressing SPOP-F133V show no evidence of ERG upregulation. (A) ERG IHC in mouse prostate organoids expressing 
mutant SPOP (top) or ERG fusion as a positive control (bottom). SPOP-F133V transgenic expression confirmed by GFP expression. Scale bars: 50 μm. (B) 
ERG immunofluorescence in mouse prostate cells expressing SPOP-F133V (top) or ERG as a positive control (bottom). Original magnification: ×1000. (C) 
ERG protein expression by Western blot in organoids expressing SPOP-F133V or ERG as a positive control. Representative image of 3 experiments shown. 
Tam, tamoxifen; TG, transgene; WB, Western blot.
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were used as positive controls. GFP IHC was performed with Abcam 
AB13970. Sections were reviewed by a board-certified genitourinary 
pathologist with specific expertise in mouse models of human prostate 
cancer (B.D. Robinson or K. Park).

Mouse prostate organoid generation and experiments. Prostate tis-
sue was extracted from euthanized mice, digested, and organoids 
grown as previously described (9, 22). CreERT2 was activated by 
adding 1 μM 4-hydroxytamoxifen (Sigma-Aldrich, T176) to the medi-
um overnight or using adenovirus expressing Cre. Either GFP or 
blind (for control cells) sorting was performed on a BD FACSAria II  
(BD Life Sciences).

Statistics. Gene expression signatures were derived from dif-
ferentially expressed genes among ERG-fusion, SPOP-mutant, and 
all tumors, as compared with normal samples, by using the Wilcox-
on signed-rank test after transforming the RSEM via log2(RSEM + 
1) from TCGA human prostate cancer and normal samples. Multi-
ple-hypothesis testing was considered by using Benjamini-Hochberg 
(FDR ≤ 0.001) correction. Unsupervised clustering of TCGA human 
prostate cancer samples were generated based on SPOP-mutant and 
ERG-fusion signatures. The SPOP-mutant signature was derived from 
the differentially expressed genes between SPOP-mutant and SPOP/
ERG wild-type samples using the Wilcoxon signed-rank test after 
transforming the RSEM via log2(RSEM + 1) using an FDR of 0.0001 
or lower. The ERG-fusion signature was derived from differentially 
expressed genes between ERG-fusion and SPOP/ERG wild-type sam-
ples following a method similar to that described above.

Study approval. Relevant human studies were approved by the 
WCM Institutional Review Board (protocol 1007011157R007). 
Informed consent was obtained from patients for use of pathologic tis-
sue. Mouse studies were approved by the WCM Institutional Care and 
Use Committee under protocol 2015-0022.

prostate serum antigen (PSA); however, the prognostic signifi-
cance of ERG rearrangement has been variable across cohorts (17, 
18). To date, SPOP-mutant tumors have not been clearly associat-
ed with any clinical features; however, it is possible that additional 
cohorts with increased sample sizes will provide further insight 
into differential features among these subclasses (4).

Our study reinforces prior work that has shown that SPOP-mu-
tant and ERG-rearranged tumors have different patterns of point 
mutations (1, 3), somatic copy number aberrations (1, 4), genomic 
rearrangements (1, 19, 20), DNA methylation (1), and gene expres-
sion (1). Collectively, these data support the hypothesis that ERG 
rearrangement and SPOP mutation represent divergent events 
leading to distinct biological classes of prostate cancer.

Methods
Mice. Gene targeting was performed as previously described (9). For 
generation of prostate-specific SPOP-F133V expression, Rosa26SPOP-F133V 
mice were crossed with previously described PtenL/+ PbCre4 mice. Only 
male PbCre4-positive mice were used to carry the PbCre4 allele. For 
organoid studies, we crossed mice expressing TMPRSSS2-CreERT2 
with mice expressing SPOP-F133V or ERG on the Rosa26 locus (9, 19). 
All described mice are in the C57BL/6 background.

Prostate tissue was harvested from mice euthanized using CO2, 
and samples were fixed in 4% formalin overnight and embedded in 
paraffin. Tissue paraffin embedding, sectioning, and staining with 
hematoxylin and eosin (H&E) and IHC were performed by the transla-
tional research program at Weill Cornell Medicine (WCM) Pathology 
and Laboratory Medicine. ERG IHC was performed using the Abcam 
EPR3864 clone, which has previously been characterized in detail 
by our group and others (10, 12, 21). Endogenous controls (endothe-
lial cells and lymphocytes) as well as known ERG-positive samples  

Figure 3. SPOP-mutant human prostate cancers do not express ERG. (A) Results of ERG IHC in 22 human prostate cancers where SPOP mutation 
was detected. (B) Images of 2 SPOP-mutant cancers not expressing ERG. Arrow denotes ERG-expressing endothelial cells. (C) Beeswarm plots of 
ERG transcript level in reads per kilobase of transcript per million mapped reads (RPKM) across prostate cancer molecular subclasses: 175 ERG- 
fusion samples, 37 SPOP-mutant samples, 121 ERG/SPOP wild-type samples from 333 TCGA human prostate cancer samples, and 23 TCGA normal 
samples. Scale bars: 50 μm.
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Figure 4. SPOP-mutant and ERG-fusion human prostate cancer share minimal common features. (A) Overlap of expression signatures from ERG-fu-
sion tumors, SPOP-mutant tumors, and all tumors, as compared with normal prostate. (B) Heatmaps of ERG gene expression signatures in mouse and 
human prostate tissue with and without ERG-fusion expression, and SPOP-mutant and SPOP wild-type prostate organoids. (C) Heatmaps of SPOP gene 
expression signature in SPOP-mutant and SPOP wild-type organoids, and ERG-expressing and wild-type mouse prostate tissue from PTEN wild-type 
and PTEN-deleted mice, and ERG-fusion and ERG-fusion-negative human prostate cancer samples. (D) Unsupervised clustering of TCGA human prostate 
cancer samples based on the SPOP-mutant (left) and ERG-fusion expression signatures (right).
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