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Introduction
Cellular senescence was originally identified as a stable exit from 
the cell cycle caused by the finite proliferative capacity of cultured 
human fibroblasts (1, 2). Currently, senescence is considered a 
stress response that can be induced by a wide range of intrinsic 
and extrinsic insults, including oncogenic activation, oxidative 
and genotoxic stress, mitochondrial dysfunction, irradiation, or 
chemotherapeutic agents (3).

While the defining characteristic of senescence is the estab-
lishment of a stable growth arrest that limits the replication of 
damaged and old cells, many other phenotypic alterations associ-
ated with the senescent program are relevant to understanding the 
pathophysiological functions of senescent cells (4). For example, 
senescent cells undergo morphology changes, chromatin remod-
eling, and metabolic reprogramming, and secrete a complex mix 
of mostly proinflammatory factors termed the senescence-associ-
ated secretory phenotype (SASP) (Figure 1). Here, we review the 
molecular mechanisms controlling cellular senescence with a spe-
cial focus on their translational relevance and suitability for iden-
tifying and characterizing senescent cells in vivo.

Physiological roles of senescence
Cellular senescence was initially dismissed as a tissue culture 
artifact. However, a wealth of data has demonstrated that senes-
cent cells can influence disease and aging, as well as normal tis-
sue homeostasis (5). Indeed, senescence can be engaged during 
development (6, 7) and is also necessary for tissue remodeling. For 
instance, transient induction of senescent cells is observed during 
wound healing and contributes to wound resolution (8, 9). Senes-
cence can also be a protective stress response. In fact, senescence 

is best known as a potent anticancer mechanism that prevents 
malignancies by limiting the replication of preneoplastic cells (10).

However, the accumulation of senescent cells also drives 
aging and age-related diseases (11, 12). The connection between 
senescence and aging was initially grounded on observations of 
the accumulation of senescent cells in aged tissues (13). It was 
suggested that, during aging, senescence of stem and progeni-
tor cells could hinder tissue homeostasis by interfering with the 
capacity of tissues to repair and regenerate. In the last 10 years, 
our understanding of senescence’s detrimental consequences in 
aging and age-related pathologies has significantly expanded. 
Two lines of research have facilitated this awareness. First, the 
use of transgenic models that allow for the detection of senes-
cent cells has enabled a systematic identification of these cells 
in many age-related pathologies (5). Second, the development 
of genetic and drug strategies to selectively eliminate senescent 
cells, spearheaded by the van Deursen laboratory, has demon-
strated that senescent cells can indeed play a causal role in aging 
and related pathologies (11).

The confirmation that selectively killing senescent cells signif-
icantly improves the health span of mice in the context of normal 
aging and ameliorates the consequences of age-related disease or 
cancer therapy (14–19) has ignited interest in the identification of 
compounds that can clear senescent cells. These so-called seno-
lytic therapies, however, still face important caveats. In addition to 
their potential side effects, the evaluation of senolytic compounds 
is compromised by limitations such as the lack of universal senes-
cence biomarkers and the heterogeneity of senescent phenotypes 
in vivo (20). Ongoing research into the pathways that initiate and 
maintain senescence will provide insights to identify biomarkers 
and potential therapies to target senescent cells.

Senescence as a dynamic program
Senescence has been traditionally considered as a defined, stat-
ic cell fate. However, it is now recognized that senescence is a 
dynamic multistep process (11). A simplified model (Figure 1) 
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Overall, therapeutic approaches aiming to modulate senes-
cent phenotypes will benefit from a better understanding of the 
steps driving and defining the evolution of senescent cells in vitro.

Cell cycle arrest
One of the defining features of senescent cells is their stable cell 
cycle arrest. This cell cycle exit is controlled by activation of the 
p53/p21CIP1 and p16INK4a/Rb tumor suppressor pathways (Figure 2). 
Unlike quiescent cells, senescent cells are nonresponsive to mito-
genic or growth factor stimuli; thus, they are unable to reenter the 
cell cycle even in advantageous growth conditions. Senescent cells 
are also distinct from terminally differentiated cells, which are 
also irreversibly withdrawn from cell cycle. While terminal differ-
entiation is the result of a defined developmental program, which 
turns undifferentiated precursors into specialized effector cells, 
senescence is mainly implemented as a cellular stress response. 
However, terminally differentiated cells such as neurons, adipo-
cytes, and hepatocytes can also undergo senescence, or at least 
show senescence-like features, during aging or in response to 
oncogenic activation or DNA damage (21, 23–25). This indicates 
that the onset of senescence can occur independently of an active 
cell cycle arrest.

DNA damage response
The senescence growth arrest is often triggered by a persistent 
DNA damage response (DDR) caused by either intrinsic (oxida-
tive damage, telomere attrition, hyperproliferation) or external 
insults (ultraviolet, γ-irradiation, chemotherapeutic drugs) (26). For 
instance, during replicative senescence of human fibroblasts, pro-
gressive telomere shortening ultimately exposes an uncapped, dou-
ble-stranded chromosome free end, which is sensed as a double-
strand break by the DDR machinery (27). In cells undergoing OIS, 
the initial hyperproliferative phase that follows oncogene activation 
induces this DDR. In response to mitotic signals, an increase in 
usage of DNA replication origins leads to accumulation of genom-
ic damage and activation of a DDR because of stalled replication 
forks (9, 28, 29). Senescence is associated with a persistent DDR 

suggests that although the initial senescence-inducing signals 
are sufficient to initiate cell cycle exit, this merely constitutes an 
early step in the senescence process. Senescent cells progressive-
ly remodel their chromatin and start to sequentially implement 
other aspects of the senescence program, such as the SASP, to 
enter into a second step of “full senescence.” If these senescent 
cells persist for extended periods of time, they continue evolving 
and can be categorized as entering into a third step of “late senes-
cence,” which can involve adaptation and diversification of the 
senescent phenotype. It is tempting to suggest that the concept of 
senescence progression may help account for the heterogeneity of 
senescent cells and their associated phenotypes in vivo. Indeed, 
the senescent responses occurring in vivo can be categorized into 
two types. Acute senescence seems to be a programmed process 
that is triggered in response to discrete stressors, is established 
with fast kinetics, and normally contributes to tissue homeosta-
sis. In contrast, chronic senescence may result from long-term 
unscheduled damage, and it is often associated with detrimental 
processes such as aging. Only chronic senescence is associated 
with the presence of cells in a state of late, deep senescence. Nev-
ertheless, there is no conclusive evidence proving an irrefutable 
relationship between the different stages of senescence identi-
fied in cultured cells and the physiopathological functions asso-
ciated with senescent cells. In fact, recent evidence suggests that 
the functionality of senescent cells in vivo strongly relies on the 
SASP’s effect on the surrounding environment and the associated 
immune responses. However, the effects of the SASP may be dif-
ficult to predict. On one hand, the senescent secretome is a het-
erogeneous mix of proteins whose composition depends not only 
on the stage of senescence progression but also on the affected cell 
type and the nature of the inducing stressor(s). The efficiency and 
kinetics of the clearance of senescent cells may vary depending on 
the organ in which they accumulate or the general ability to mount 
an effective immune response. For example, while cells undergo-
ing oncogene-induced senescence (OIS) in the liver are efficiently 
cleared by the immune system (21), senescent cells in melanocytic 
nevi often manage to evade immune clearance and persist (22).

Figure 1. Phenotypic characteristics of senescent cells. Diagram depicting some of the phenotypic alterations associated with senescence initiation, early 
senescence, and late phases of senescence.
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kinase inhibitor (CDKi) p21CIP1, which in turn 
blocks CDK2 activity, resulting in hypophosphor-
ylated Rb and cell cycle exit (26). In agreement 
with this, inactivation of p53 signaling by differ-
ent means interferes with the onset of cellular 
senescence (36–39).

Importantly, if the stress that triggers senes-
cence is transient, p53 induction can enact a quies-
cent state and activate DNA repair processes. Upon 
resolution of the stress, cells can resume cycling 
(12). Persistent stress or additional signals can acti-
vate p16INK4a, an inhibitor of CDK4 and CDK6, con-
tributing to a long-lasting arrest (40). It has been 
suggested that the role of p21CIP1 may be limited to 
the onset of senescence, whereas p16INK4a maintains 
a durable growth arrest, possibly signifying the 
existence of differently regulated phases of senes-
cence. Indeed, although the induction of p21CIP1 is 
important for senescence initiation, its expression 
does not necessarily persist in senescent cells (20). 
In agreement with this, upregulation of p21CIP1 (but 
not p53 or p16INK4a) is the driver of developmental 
senescence: a short-term “programmed” type of 
cellular senescence that occurs during mammalian 
embryonic development (6, 7). Although p21CIP1 can 
be a valuable marker of senescence in some set-
tings, it is also induced during transient cell cycle 
arrest or in response to DNA damage, and it should 
be used as a senescence marker only in combina-
tion with others.

Activation of the INK4/ARF locus
The INK4/ARF locus encodes for three tumor suppressors: ARF 
(p14ARF in human and p19Arf in mouse) and p16INK4a — each encod-
ed by the CDKN2A gene — and p15INK4b, encoded by CDKN2B (41, 
42). Both p16INK4a and p19ARF have key roles in maintaining the 
senescent growth arrest. p16INK4a selectively inhibits CDK4 and 
CDK6, and p19ARF prevents p53 degradation. Indeed, loss-of-func-
tion mutations in p16INK4a are among the most frequent in human 
malignant cancers (43), suggesting that loss of p16INK4a enables 
senescence bypass and tumor progression.

The functional importance of the INK4/ARF locus has driven 
strong efforts to understand its regulation. In normal cells, the 
INK4/ARF locus is silenced by the Polycomb repressive com-
plexes PRC1 and PRC2. Thus, disruption of PRC1 or PRC2 com-
ponents, such as CBX7, BMI1, or EZH2, and the consequent loss 
of the trimethyl histone H3K27 repressive mark and/or PRC1 from 
the INK4/ARF locus are sufficient to activate p16INK4a and induce 
senescence (44–47). Epigenetic regulation of the INK4/ARF locus, 
however, goes beyond Polycomb proteins. Other epigenetic regu-
lators such as MLL1, JMJD3, or ZRF1 are involved in the regulation 
of the locus (41, 48–51). How the recruitment and displacement 
of PRCs and other epigenetic components to the INK4/ARF locus 
are controlled is still not completely understood. The suggested 
model is that interaction with transcription factors (e.g., TWIST1 
or transcription factors of the homeobox family) and long inter-
genic noncoding RNAs (e.g., ANRIL) can dictate the recruitment 

that results in irreparable DNA damage (30). The DDR associated 
with replicative senescence is telomere-dependent: it correlates 
with telomere uncapping and an overall loss of telomeric length 
(27). During OIS, DDR occurs independently of telomeric length, 
but it is still associated with telomeric dysfunction (31). Regardless 
of which mechanism drives the damage, the DDR is characterized 
by increased deposition of γ-H2Ax (the histone H2AX phosphory-
lated at Ser139) and p53-binding protein 1 (53BP1) in the chromatin 
as well as activation of a kinase cascade involving first the serine/
threonine-nonspecific kinases ATM and ATR and later the check-
point serine/threonine kinases CHK1 and CHK2, which eventually 
leads to activation of the p53/p21CIP1 axis (26, 27).

Despite DDR’s role in initiating senescence, DDR markers 
have limited utility for identifying senescence in vivo. In fact, 
activation of p53 and/or p21CIP1 during senescence can occur in a 
DDR-independent manner (6, 7, 32, 33). Moreover, the majority of 
cells expressing markers of DNA damage in vivo, especially in a 
nonpathological setting, are not in fact senescent; rather, they are 
responding to a transient reparable damage.

Induction of the p53/p21CIP1 pathway
The senescent growth arrest is implemented by activation of 
the p53 and p16INK4a/Rb tumor suppressor networks (34). Once 
activated, p53 regulates a complex antiproliferative transcrip-
tional program (35). The most relevant function of p53 in senes-
cence is to induce the transcription of the cyclin-dependent 

Figure 2. Molecular pathways controlling growth arrest during senescence. A variety of 
stressors induce senescence-associated growth arrest. Cell cycle exit is regulated by induc-
tion of the p16INK4a/Rb and p53/p21CIP1 pathways. Figure reproduced with permission from 
McHugh and Gil (126).
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cancer cells with inactivated Rb), and it is 
unclear whether p16INK4a expression in macro-
phages or lymphocytes reflects a senescence 
phenotype or cell fates such as differentia-
tion or exhaustion (20). Finally, the currently 
available antibodies are rather poor at detect-
ing p16INK4a in murine tissues.

Non–cell-autonomous effects  
of senescence
Cellular senescence was initially considered 
to be a cell-intrinsic program. Increasing evi-
dence, however, has shown that senescent 
cells have the ability to signal and influence 
their surrounding environment. Senescent 
cells produce a complex mixture of soluble 
and insoluble factors that are collectively 
termed senescence-associated secretory 
phenotype (SASP) or senescence-messaging 
secretome (58, 59). SASP is the general term 
given to the combination of cytokines, che-
mokines, extracellular matrix proteases, 
growth factors, and other signaling molecules 
secreted by senescent cells. Importantly, its 
specific composition varies depending on the 
cell type and the senescence inducer. Like-
wise, the functions attributed to the SASP, 
or at least some of its members, are also very 
diverse and depend not only on the nature of 
the SASP, but on the surrounding environ-

ment and the genetic context of the cells being exposed to the 
senescent secretome. The SASP is the best-studied mechanism by 
which senescent cells influence their neighbors, but is not the only 
one. For example, senescent cells can signal and influence adja-
cent cells through juxtacrine NOTCH/JAG1 signaling (60) or ROS 
production (61), or by cargo transfer, which occurs via formation 
of cytoplasmic bridges (62) or release of exosomes (63).

Functions of the SASP. The SASP can have beneficial or detri-
mental effects (Figure 3). It is important to recognize, however, 
that the SASP’s effects in specific contexts are pleiotropic. The 
SASP reinforces the senescence growth arrest in vitro by imple-
menting an autocrine positive-feedback loop. Indeed, knock-
down of IL-6R, insulin-like growth factor–binding protein 7 
(IGFBP7), or CXCR2, a receptor for IL-8 and related chemokines, 
prevents senescence (64–66). This autocrine loop contributes 
to the tumor-suppressive function of senescence. Interestingly, 
the SASP can also induce nonmalignant proliferating neighbor 
cells to undergo senescence (termed paracrine senescence) (61, 
67, 68). This suggests that senescent cells could also amplify the 
antitumoral response by limiting the proliferation of nearby cells 
exposed to similar stressors.

Conversely, the senescent secretome can also promote tumor-
igenesis. In fact, the SASP has an important proinflammatory 
nature, and inflammatory mediators are powerful drivers of tumor 
progression. Early work showed that the SASP of senescent fibro-
blasts can promote proliferation and metastatic features in prema-
lignant epithelial cells or increase tumor vascularization in xeno-

specificity (52–55). On the other hand, senescence-dependent 
transcriptional regulation of some of these chromatin modifiers, 
such as JMJD3 or EZH2, may drive the activation of the locus.

Further highlighting its functional relevance, p16INK4a stands 
out as one of most specific markers of senescence in vivo (13). 
While p16INK4a expression is almost undetectable in young healthy 
organisms, it markedly increases during tumorigenesis and aging. 
This evidence is the combined result of expression studies and the 
use of mouse models reporting for p16INK4 (56, 57). For instance, 
the Sharpless group (57) demonstrated an exponential increase in 
p16INK4a expression during aging. In these studies, while p16INK4a 
activity did not correlate with mortality, it did predict cancer ini-
tiation with higher sensitivity than glucose uptake (measured by 
fluorodeoxyglucose-PET).

More recently, mouse models have been generated in which 
p16INK4a-positive cells can be selectively eliminated based on the 
expression of inducible suicide genes under the control of p16INK4a 
regulatory elements (9, 15). These models have served to unequiv-
ocally show the causal roles of senescent cells in aging, age-related 
diseases, wound healing, and cancer therapy. The findings report-
ed in these studies will be described in more detail in the other 
Reviews of this series.

Despite the clear benefits of exploiting p16INK4a activation as a 
tool to understand the role of senescence in pathophysiology, its 
use as an in vivo biomarker of senescence has limitations. First, 
forms of p16INK4a-independent senescence can occur in vitro. More 
importantly, p16INK4a can be expressed in nonsenescent cells (e.g., 

Figure 3. The SASP is an important mediator of the pathophysiological functions of senescent 
cells. Scheme summarizing some of the functions associated with the SASP.
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senescence, regeneration, and repair in response to damage 
remain to be further established.

Irrespective of their functional relevance, components of the 
SASP have limited utility as biomarkers, as they are not specific 
to senescence. Only reliable costaining or single-cell profiling will 
allow us to pinpoint which SASP components are driving the func-
tions of the senescent secretome in specific contexts in vivo.

Regulation of the SASP. The SASP is regulated at multiple lev-
els, including transcription, translation, mRNA stability, and secre-
tion. The SASP also depends on autocrine and paracrine positive- 
feedback loops that enhance robust signal amplification. Multiple 
signaling pathways, including the DDR (81, 82), p38 MAP kinase 
(33), and cGAS/STING (83–85), have been linked with the regulation 
of the SASP. Most of these cascades seem to converge on the activa-
tion of NF-κB and CCAAT/enhancer-binding protein-β (C/EBPβ).

NF-κB and C/EBPβ are activated and enriched in the chro-
matin fraction in senescent cells (64, 65, 86) and regulate SASP 
components by directly controlling transcription of key regulators 
of the inflammatory SASP such as IL-8 or IL-6. In turn, IL-6 and 
IL-8 act in an autocrine feed-forward loop to enhance the activity 
of C/EBPβ and NF-κB and amplify SASP signaling (64, 65). IL-1α 
also behaves as a master regulator of the SASP (87). Indeed, IL-1α 
signaling is sufficient to partially recapitulate the inflammatory 
SASP (68). Moreover, inhibition of the NLRP3 inflammasome, 
necessary to process and activate IL-1β, can blunt the SASP (68).

The SASP can also be regulated at an epigenetic level. For 
example, MLL1 inhibition blunts the SASP via a decrease in 
γ-H2Ax at SASP genes (88), and the histone variant macroH2A1 is 
a critical component of the positive-feedback loop that maintains 
SASP expression (89). Perhaps more relevant, SASP induction 
requires the recruitment of BRD4 to senescence-activated super-
enhancers that lie adjacent to SASP genes (90).

The mTOR pathway is an important node in SASP regulation. 
It has been described that mTOR-mediated phosphorylation 
of the translation repressor protein 4EBP regulates the transla-
tion of IL-1α (91) and MAP kinase–activated protein kinase 2  
(MAPKAPK2) (92) to control the SASP. MAPKAPK2 inhibits 
ZFP36L1, an mRNA-binding protein that specifically targets pro-
inflammatory SASP components for mRNA degradation. Thus, 
mTOR can control the senescent secretome by indirectly regulat-
ing the stability of SASP mRNAs (92). Moreover, cells undergoing 
OIS boost the production of SASP components by coordinating 
protein synthesis and autophagy in the TOR-autophagy spatial 
coupling compartment, often abbreviated as TASCC (93). How-
ever, the regulation of the SASP by autophagy is complex, as 
GATA4 controls the SASP by inhibiting autophagy (94).

Most of the regulatory mechanisms reviewed here have a 
global effect on SASP regulation or preferentially control a proin-
flammatory SASP subset. In fact, this particular proinflammatory 
arm is highly conserved among the most studied forms of senes-
cence, including replicative, irradiation-induced, and oncogene-
induced senescence. The heterogeneous and variable composi-
tion of the SASP, however, suggests the existence of different 
SASP subsets. For example, a distinct senescent secretome has 
been described in the context of mitochondrial dysfunction (95), 
and NOTCH signaling enables a switch between a TGF-β and an 
inflammatory secretome (60).

graft transplants (69, 70). More recently, the protumorigenic role 
of the SASP has been examined using models that better resemble 
human cancer. For example, the SASP of senescent hepatic stel-
late cells (HSCs) promotes the proliferation and malignancy of the 
surrounding hepatocytes in obese mice treated with chemical car-
cinogens (71). Interestingly, the senescent secretome also medi-
ates the harmful effects of senescent cells that accumulate upon 
chemotherapy treatment in vivo. In fact, elimination of senescent 
cells in this context prevents tumor relapse (17).

The interplay between the SASP and the immune response 
is also complex. On one hand, it is believed that the SASP might 
have initially evolved as a way to recruit the immune system to 
eliminate senescent cells. Indeed, during cancer initiation, SASP-
dependent recruitment of Th1 cells, NK cells, and macrophages is 
essential to clear incipient preneoplastic cells and prevent the pro-
gression of hepatocellular carcinoma (HCC) (21, 72). On the other 
hand, the SASP can have immunosuppressive properties (73–75). 
For instance, Eggert and colleagues (75) showed that when pre-
malignant senescent hepatocytes coexist with liver cancer cells, 
the SASP-dependent recruitment of immature myeloid cells may 
promote HCC progression by impairing the function of NK cells, 
suggesting a multifaceted interaction between the SASP, immune 
cells, and cancer.

The SASP has also been strongly linked to aging and age-relat-
ed diseases. Low-level chronic inflammation (also referred to as 
“sterile inflammation” or “inflammaging”; ref. 76) underlies many 
age-related pathologies. It seems that the SASP could explain, at 
least in part, this local inflammation within tissues. Indeed, the 
elimination of senescent cells reduces levels of proinflammatory 
cytokines such as IL-6, IL-1α, and TNF-α in fat, kidneys, and skel-
etal muscle of aged mice (14, 15, 18). However, the relevance of 
this decreased inflammation in the improvement of age-related 
diseases after senolysis is not well understood. Further hinting at 
the SASP’s relevance as a mediator of the detrimental effects of 
senescent cells in aging is the observation that often only a small 
percentage of cells in aged tissues are senescent (77). Given the 
positive impact of eliminating these senescent cells, it is tempting 
to speculate that SASP suppression may underlie many of the ben-
eficial effects of senolysis.

Altogether, recent discoveries seem to indicate that the delete-
rious effects of the SASP may outweigh its beneficial properties. 
Still, the SASP explains important physiological effects exerted by 
senescent cells. For instance, senescent fibroblasts are induced in 
response to a cutaneous wound and accelerate wound closure, in 
part thanks to secreting factors such as the extracellular matrix–
associated signaling protein CCN1 and platelet-derived growth 
factor AA (PDGF-AA), reinforcing the idea that acute, nonpersis-
tent senescence can be beneficial (8, 9). Senescence also limits 
fibrotic responses (78). For example, senescence acts as a break in 
the progression of liver fibrosis that is induced by acute liver dam-
age. Dying hepatocytes trigger the proliferation of HSCs, which 
secrete fibrogenic compounds to form a fibrotic scar. Eventually, 
these HSCs enter into senescence, and the SASP contributes to 
fibrotic scar degradation, clearance of the senescent cells, and 
restoration of tissue homeostasis (79). Finally, in response to tis-
sue damage, factors secreted by senescent cells can also promote 
stemness (80). The processes that determine the balance between 
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SA β-galactosidase activity
The most widely used senescence marker is senescence-associ-
ated β-galactosidase (SA β-gal) activity. This enzymatic activity, 
which is found in many normal cells under physiological condi-
tions (pH 4.0–4.5), is significantly amplified in senescent cells as 
a result of increased lysosomal content (96, 97). Because of this, 
histochemical detection of β-gal activity at pH 6.0 (suboptimal for 
normal cells) allows specific identification of senescent cells (98). 
Since SA β-gal activity is detected in most senescent settings, both 
in vitro and in vivo, it is considered a de facto hallmark of senes-
cence. However, cells deficient in GLB1 (the gene encoding for lyso-
somal β-gal) do not exhibit impairments in the functional aspects 
of senescence (97). Another lysosomal enzyme, α-fucosidase, 
has been proposed as an alternative senescence biomarker (99). 
The increased lysosomal content of senescent cells, which might 
reflect increased autophagy (100), is also a feature of cell types 
such as active macrophages, Kupffer cells, and osteoclasts (101, 
102). This highlights the need to use additional markers in combi-
nation with SA β-gal activity to characterize senescence. Recently, 
lipofuscin, an aggregate of oxidized proteins, lipids, and metals 
that are known to accumulate in aged tissues, was reported to 
colocalize with SA β-gal activity in senescent cells (103). Although 
the specificity of lipofuscin accumulation during senescence has 
not been broadly studied, its potential as a biomarker is appealing, 
especially since, unlike SA β-gal activity, lipofuscin staining can be 
performed in paraffin-embedded archival material.

Chromatin reorganization
Senescence is associated with large-scale chromatin rearrange-
ments (104). Besides the already described DDR (26) and the 
formation of PML bodies (a type of matrix-associated nuclear 
domain) (105), the most striking chromatin change observed in 
senescent cells is the formation of senescence-associated hetero-
chromatic foci (SAHFs), which are more prominent in human cells 
undergoing OIS (106). These foci can be identified by DAPI stain-
ing and are characterized by enrichment of repressive marks such 
trimethylated H3K9 and heterochromatic protein 1 (HP1), accu-
mulation of high-mobility group HMGA proteins, and loss of link-
er histone H1 (4). Therefore, it was hypothesized that SAHFs may 
represent a senescence-specific heterochromatic compartment. 
The SAHFs are the result of the spatial repositioning of preexisting 
repressive marks rather than being caused by global changes in his-
tone methylation (107). Interestingly, genomic regions contained 
in the SAHFs are found in lamina-associated domains (LADs) in 
proliferating cells (108). Upon induction of senescence and loss of 
lamin B1 (LMNB1), these LADs detach from the nuclear periphery 
and cluster within the nuclei. Strikingly, Hi-C analysis (a high-
throughput variant of chromosome conformation capture) sug-
gests that there is a loss of internal structure and possible decom-
paction of the DNA enriched in the SAHF core (109), thus calling 
into question the concept of SAHFs as silencing compartments. 
Another consequence of the autophagy-mediated degradation of 
LMNB1 observed in senescence (110) is compromised integrity 
of the nuclear envelope, which may lead to the observed blebbing 
of cytoplasmic chromatin fragments (CCFs) (111). These CCFs, 
via activation of the cGAS/STING pathway, are crucial to initiate 
a proinflammatory response in senescence and cancer. Indeed, 

mice deficient in STING show impaired immunosurveillance and 
decreased tissue inflammation due to reduced SASP (83–85).

Although the diverse global chromatin changes occurring in 
senescence have clear functional consequences, these changes 
are not always observed macroscopically or conserved among dif-
ferent cell types or senescence inducers (112). Therefore, it is not 
straightforward to rely on these global chromatin alterations to 
identify senescent cells in vivo.

Metabolism, autophagy, and mitochondrial 
function in senescent cells
Senescent cells display metabolic changes such as increases in gly-
colysis, mitochondrial metabolism, and autophagy. A clear illustra-
tion of this came when Dörr and colleagues showed that the high 
production of components of the SASP relies on enhanced ATP 
production mediated by mitochondrial metabolism (i.e., the TCA 
cycle) and glycolysis (113). The authors suggested that the increased 
SASP production and secretion lead to a proteotoxic stress that can 
be attenuated by activation of autophagy. Previous evidence high-
lighting the role of autophagy in the sustainability of the SASP had 
reported that the amino acid supply required to maintain the rapid 
protein turnover that the SASP demands relies on coupling autoph-
agy (autolysosomes) with protein synthesis (93).

The role of mitochondrial metabolism and autophagy in senes-
cence, however, remains controversial. Some studies have shown 
that inhibition of autophagy facilitates senescence (94, 114). Also, 
senescent cells display decreased levels of mitophagy (mitochon-
drial autophagy), which results in a defective mitochondrial net-
work that may contribute to metabolic dysfunction in aging (115). 
In agreement with this, Garcia-Prat et al. showed that mitophagy 
contributes to the maintenance of muscle function during aging 
by preventing senescence in satellite cells (116). Defective mitoph-
agy leads to accumulation of dysfunctional mitochondria and 
ROS-induced senescence. Similar results were observed in a cell 
model of parkin-mediated mitophagy (117). Interestingly, deple-
tion of mitochondria impaired senescence by disrupting a positive- 
feedback loop involving ROS production and a DDR rather than as 
a result of insufficient energy levels. Indeed, senescent cells lacking 
mitochondria displayed higher ATP levels due to increased glycoly-
sis. Therefore, it seems that at least in some contexts, the execu-
tion of the senescence program is compromised not by insufficient 
energy levels, but rather by the status of mitochondrial oxidative 
metabolism. In work related to this concept, Kaplon and colleagues 
(118) argued that senescent cells must reprogram metabolism in 
order to support their metabolic demands. They showed that an 
increase of mitochondrial oxidative respiration through activation 
of pyruvate dehydrogenase was required for the execution of OIS.

Morphological changes associated with 
senescence
In cell culture, senescence is normally accompanied by significant 
morphological changes. Senescent cells become flat, enlarged, 
and vacuolized, and sometimes appear with multiple or enlarged 
nuclei. Changes in shape rely on the status of the scaffolding pro-
tein caveolin 1 and the Rho GTPases Rac1 and CDC42 (119), and 
vacuolation has been associated with ER stress caused by the 
unfolded protein response (120). Senescent cells also form cyto-
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plasmic bridges that allow them to signal to neighboring cells via 
direct intercellular protein transfer (62). Beyond these examples, 
the functional significance of most morphological changes asso-
ciated with senescence is unclear. In vivo, senescent cells appear 
to preserve the morphology dictated by the architecture of the tis-
sue. However, recent studies have discovered that SA β-gal+ cells 
in aged mice increase in size (77).

Resistance to apoptosis
Senescence and apoptosis are alternative cell fates that often can 
be triggered by the same stressors. While we do not have a full 
understanding of what makes the cell decide between one and 
another program, mechanisms must be in place to lock those deci-
sions. In this regard, senescent cells are resistant to extrinsic and 
intrinsic apoptosis (121, 122). Recent studies have suggested that 
this is a result of the upregulation of BCL-2 family proteins such 
as BCL-W and BCL-XL (123). This is of extraordinary practical rel-
evance since inhibiting BCL-2 family proteins induces apoptosis 
on senescent cells (19, 123, 124).

Concluding remarks
Senescence is emerging as a therapeutic target relevant for a wide 
range of pathologies. Pro-senescent and anti-senescent (seno-
lytic) therapies are showing promising results in preclinical mouse 
models, and human clinical trials are in progress. One of the most 
widely used senolytics are BCL-2 family inhibitors that target 
apoptotic resistance of senescent cells (19, 123, 124). Converse-
ly, drugs that induce senescence (such as palbociclib and other 
CDK4/6 inhibitors) have shown significant benefits as anticancer 
agents (125). In agreement with the observations that inhibition of 
CDK4/6 can induce senescence in certain tumor cell lines in vitro, 
clinical trials have shown that combining palbociclib with current 
breast cancer therapies significantly increases median progres-

sion-free survival. Interestingly, in order to avoid the possible side 
effects mediated by the resulting senescent tumoral cells, the pro-
senescence therapy with CDK4/6 inhibitors could be combined 
with senolytics, especially if the immune system is compromised 
and cannot effectively clear senescent cells.

Overall, it is becoming apparent that it is essential to charac-
terize the mechanisms and functions of senescence cells in each 
context to design specific, optimal, nontoxic senescence thera-
pies. This will require better characterization of the various sub-
types of senescence in vivo and establishing which senescence 
features can be targeted or enhanced without negatively affecting 
normal cells. Although emphasis is currently shifting to practical 
aspects and viability of such therapies, a better understanding of 
the molecular mechanisms of senescence is essential. The accu-
rate identification of senescent cells in vivo is also important. As 
indicated in this Review, all in vivo biomarkers for senescence, 
including SA β-gal activity or p16INK4a expression, may be unreli-
able depending on the context or owing to technical limitations. 
Because it seems unlikely that a new universal biomarker of 
senescence will appear, especially considering the heterogeneity 
of senescent phenotypes in vivo, single-cell transcriptome and 
proteome profiling of tissues will be key to understand the nature 
of these senescent cells, investigate their specific liabilities, and 
eventually implement therapeutic approaches.
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