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Introduction
During aging, the human mortality rate rises exponentially 
as a result of a loss of normal organ functions, including tissue 
maintenance and repair capacity. Stressors that young tissue 
may tolerate because of excess functional reserve become insur-
mountable in the elderly, leading to age-related diseases (1). 
Age-related cardiovascular disease (CVD) is of particular clini-
cal concern as the global population ages, with 1 billion individ-
uals projected to be over 65 years old by 2030. Indeed, 38% of 
people ages 40 to 60 and 83% of those over 85 have CVD (2). 
The primary diseases included under the umbrella of CVD are 
chronic heart failure (HF), hyper-tension, and coronary artery 
disease (CAD; atherosclerosis). Although hypertension and 
atherosclerosis can be pharmacologically managed, therapy- 
resistant subpopulations exist for both these diseases (3, 4), 
and the long-term prognosis for HF remains poor (5). Given 
the growing patient population and the inadequacy of current  
medical management, there is strong incentive to identify new 
therapeutic targets to treat CVD or, more optimally, prevent it.

One mechanism behind age-related CVD may be cellular senes-
cence, a stress-response process by which damaged cells exit the cell 
cycle permanently and produce a proinflammatory senescence- 
associated secretory phenotype (SASP) (1). The cellular senes-
cence program serves an important tumor-suppressive function 
by growth-arresting preneoplastic cells. Normally, SASP factors 
target senescent cells (SNCs) for removal by the immune system, 
clearing adjacent, nonsenescent preneoplastic cells in the process 
and therefore providing tumor-suppressive benefits that are supe-

rior to apoptosis (6). However, long-term persistence of SNCs and 
their secretome drives cancer, atherosclerosis (7), and other major 
age-related diseases, in addition to aging itself (8–10). The solidify-
ing link between SNCs, cardiovascular aging, and CVD depends on 
four lines of evidence. First, stressors that drive senescence, such 
as telomere shortening and oxidative stress, rise with aging and 
CVD in cardiovascular tissue (11–13). Second, SNC biomarkers are  
present at the same sites (14, 15). Third, prevention of the SNC fate  
by genetic elimination of senescence effectors can blunt age- 
related loss of tissue function (16). Finally, and most compellingly, 
SNC-killing approaches block the effects of aging on cardiovascu-
lar performance (10), attenuate CVD (7), and may ultimately serve 
as therapies (17).

Based on these lines of evidence, here we propose a bimodal  
model for cellular senescence in CVD. Initially, primary SNCs 
accumulate in cardiovascular tissue with age, decreasing organ 
functional reserve and predisposing to age-related CVD. Then, 
as CVD develops, heightened cellular stress within the diseased 
tissue microenvironment produces a second wave of disease- 
associated SNCs (secondary SNCs). Secondary SNCs go on to 
exacerbate preexisting CVD. Because SNCs predispose to CVD as 
well as participate in pathophysiology, we posit that SNCs could be 
targeted both preventatively and therapeutically in CVD.

Senescence-driven aging is a tradeoff for  
tumor suppression
Hayflick and Moorhead showed in 1961 that human fibroblasts in 
vitro can divide a limited number of times before entering a per-
manent, stable growth arrest (18). This finite proliferative poten-
tial, now called replicative senescence, was swiftly proposed as a 
cell-autonomous mechanism for declining tissue repair capacity 
in aging (19). The primary molecular event responsible for this 
“senescence timer” in human cells is now known to be telomere 
attrition (Figure 1 and ref. 20). Owing to the nature of RNA- 
templated DNA replication, approximately 50 to 100 base pairs 
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inhibitor p16Ink4a (27). Finally, the senescence state is reinforced 
through heterochromatinization of cell-cycle genes (28, 29) and 
the establishment of the SASP, which includes factors such as 
IL-6 that help maintain the cell-cycle arrest (30–33).

SNCs in vitro are known to produce numerous inflammatory 
cytokines, chemoattractant factors, proteases, and signaling mol-
ecules as part of the SASP (Figure 1 and refs. 30, 31). The SASP 
is a p16Ink4a-independent SNC property that can be either DDR- 
dependent or -independent, but appears to rely on proinflamma-
tory signaling through NF-κB, mTOR, and p38/MAPK (34–36). 
The SASP in vivo has diverse functions and, depending on bio-
logical context, can be beneficial or detrimental. For example, 
transient SNCs arising during wounding secrete PDGF-AA to has-
ten wound closure and are rapidly cleared (37). In contrast, age- 
associated SNCs linger, driving tissue inflammation, dysfunction, 
and carcinogenesis presumably via the SASP (8–10, 38).

Cellular senescence drives cardiovascular aging
Major age-related changes in the cardiovascular system. Normal 
aging produces multiple alterations in the cardiovascular system 
that predispose to CVD. Crucially, arterial and cardiac health are 
tightly interrelated; it is therefore likely that interventions that 
enhance cardiac or arterial healthspan individually would have 
widespread benefits for CVD risk.

Aging results in arterial dysfunction at a structural and molec-
ular level. In the arterial wall (media), elastic fiber degradation 
and enhanced collagen synthesis by vascular smooth muscle cells 
(VSMCs) result in arterial stiffening (39, 40). Increased arterial  
stiffness results in higher systolic and lower diastolic pressure 
(41), producing widened pulse pressure hypertension (42) that,  
together with aortic root dilation (43), increases cardiac afterload 
(44). When combined with hypertension, reduced elastic fiber con-
tent can predispose to aneurysms (45–47). Endothelial dysfunction 

are lost from the ends of chromosomes with each cell division (21). 
Telomeres, comprising DNA hexanucleotide repeats complexed 
with protein, are protective caps terminating each chromosome 
that prevent this attrition from reaching coding sequences (22). 
More importantly, telomeres prevent DNA damage response 
(DDR) machinery from recognizing chromosome free ends as 
double-strand breaks (DSBs) and attempting erroneous repair, 
which could result in illegitimate recombination or chromosome 
fusion events. Fused chromosomes may break during mitosis, 
with repeated fusion/breakage cycles resulting in chromosomal 
instability, aneuploidy, and neoplastic transformation (23). There-
fore, when telomeres become critically short, the DDR is activated 
and induces senescence to safeguard against replication with an 
unstable karyotype.

Elucidation of the molecular mechanisms behind replica-
tive senescence has produced a framework for understanding 
senescence induction and maintenance. First, some form of 
molecular damage occurs and is recognized by a damage sensor, 
such as the apical ATM/R kinases in the case of DSBs (Figure 
1). In addition to telomere erosion, other stressors that induce 
DSBs, such as oncogenic Ras expression (24, 25) and ionizing 
radiation (26), can also activate ATM/R to trigger senescence. 
Second, the cell engages effectors of a reversible cell-cycle 
arrest to halt proliferation and attempt repair. For example, 
Ras stabilizes p53 to upregulate the cyclin-dependent kinase 2 
(CDK2) inhibitor p21Cip/Waf, thereby blocking Rb phosphorylation 
and preventing S-phase entry. With Ras overexpression, p53  
stabilization involves both p53 phosphorylation by ATM/R and, 
in mice, upregulation of p19Arf, which blocks the ubiquitin ligase 
MDM2 from degrading p53. Third, should repair prove impos-
sible, the cell enters senescence and permanently exits the cell 
cycle. Permanent cell-cycle withdrawal requires expression of 
additional CDK inhibitors (CDKis), most notably the CDK4/6 

Figure 1. Key properties of senescent cells. In response to various types of stressors (generally irreparable macromolecular damage), replication-competent 
cardiovascular cells undergo senescence. The 3 major hallmarks of SNCs are a permanent cell cycle arrest, mediated by signaling through the p19Arf-p53-
p21Cip/Waf and p16Ink4a-Rb axes; apoptosis resistance, achieved by upregulation of prosurvival factors; and acquisition of the senescence-associated secretory 
phenotype (SASP), a bioactive secretome containing cytokines, growth factors, proteases, and other signaling molecules. 
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Prosenescence stressors also rise in aged blood vessels. Telo-
mere shortening occurs with normal aging in human large arteries 
(12, 13) and drives p53-dependent expression of the CDKi p21 (80) 
in endothelial cells (11). Intriguingly, circulating bone marrow– 
derived early endothelial progenitor cells (EPCs) exhibit age- 
dependent telomere shortening (81) and less telomerase activity 
(82). Aged human (83) and murine (84, 85) arterial endothelial 
cells as well as EPCs (86, 87) also show heightened levels of ROS 
partially due to activation of NADPH oxidase, which uncouples 
eNOS (83, 88, 89). Further study is needed to clarify whether these 
age-related changes to early EPC properties directly or indirectly 
affect endothelial homeostasis in vivo. Although human VSMCs 
undergo telomere shortening during atherosclerosis (15), this has 
not been demonstrated with normal aging. Collectively, these 
results suggest that prosenescence stressors, particularly telomere 
attrition and oxidative stress, are present throughout the aging 
cardiovascular system in the absence of frank age-related disease.

SNCs accumulate in the aging cardiovascular system. Reliably 
detecting SNCs in vivo is a major ongoing challenge to investi-
gating their biological significance to the aging process. Current-
ly, detection depends on a combination of SNC biomarkers, as 
any marker in isolation is prone to false positives. These include 
high expression of the CDKis p16Ink4a and p21Cip/Waf; lysosomal 
hydrolase activity detectable at pH 6.0, known as senescence- 
associated β-galactosidase (SA β-gal) (90); and expression of 
SASP-associated inflammatory, proteolytic, and signaling fac-
tors. Based on these markers, SNCs have been shown to accu-
mulate in numerous tissues with age in humans, nonhuman  
primates (91), and rodents (10), including heart and arteries.

Aged murine hearts show increased expression of p16Ink4a 
(10), the p53-stabilizing protein p19Arf (10, 91), and inflamma-
tory SASP factors (10). Cardiac stem cells have also been shown 
to upregulate p16Ink4a and p21Cip/Waf, potentially restricting their 
ability to produce new cardiomyocytes during aging and HF (78, 
79). Surprisingly, a large fraction of postmitotic cardiomyocytes 
(about 85%) in old hearts (72–104 years) were shown to be p16Ink4a- 
positive, versus approximately 30% in younger controls (19–49 
years) (79). This high baseline may indicate that p16Ink4a expression 
is a normal differentiation step in cardiomyocyte commitment, as 
has been reported for macrophages (92), or that senescence may 
be a relatively early event. Consistent with this interpretation, 
young murine hearts contain a mixed pool of p16Ink4a-positive, 
large cardiomyocytes with short telomeres and p16Ink4a-negative, 
small cardiomyocytes (potentially replication-competent) with 
long telomeres (93). Low-frequency SA β-gal–positive cardiomyo-
cytes have also been reported in aged mice (94) and rats (95).

These observations suggest that senescence in progenitor 
cell compartments could restrict cardiomyocyte replacement. 
However, the baseline ability of the adult human heart to renew 
cardiomyocytes, and how this changes with age, are controver-
sial. Most studies report yearly replacement rates around 1% for 
young adult mice (96) and humans (97, 98). New cardiomyocytes 
reportedly arise from cardiac stem cells residing in the heart (99) 
and bone marrow–derived progenitors (100), as well as, strik-
ingly, mature cardiomyocytes (101, 102). Therefore, unequivo-
cally determining how senescence rates in these compartments 
change as a function of age is paramount.

with resultant decreased endothelial nitric oxide synthase (eNOS) 
activity contributes to these changes. Low NO tone promotes VSMC 
proliferation and collagen production (48, 49) and can also lead to 
vasoconstriction, predisposing to angina pectoris and ischemic 
heart injury (50, 51). Dysfunctional endothelial cells also secrete 
monocyte chemoattractant protein-1 (MCP-1) and present the 
leukocyte receptors VCAM1 and ICAM1 on their surfaces, there-
by recruiting circulating monocytes and initiating atherogenesis 
(52). Upregulated NADPH oxidase (NOX) activity in dysfunctional 
endothelial cells can also shift eNOS toward production of superox-
ide anion, a reactive oxygen species (ROS), rather than NO, leading 
to inflammation and further dysfunction in a vicious cycle (53–55).

The normal aging heart employs several mechanisms to 
maintain resting systolic function and ejection fraction despite 
increased afterload (56). Structurally, the left ventricle (LV) thick-
ens to normalize tension across the LV wall but does not increase 
in mass (48), instead shortening across the long axis. The cardiac  
cycle changes, shifting from early to late diastolic filling and pro-
longing isovolemic relaxation time (57). Atria-dependent dia-
stolic filling is enhanced by left atria enlargement and increased 
contractility (58, 59). Systole is extended as a result of prolonged 
cardiomyocyte contraction, with a decrease in maximum heart 
rate driven by impaired SERCA2-dependent Ca2+ reuptake (60–
62), attenuated responsiveness to β-adrenergic signaling, and 
increased ω6/ω3 polyunsaturated fatty acid ratio in cardiomyo-
cyte membranes (41).

Although the aforementioned cardiac changes are adap-
tive and preserve systolic function, this remodeling predisposes 
to stress-induced pathology. Left atrial dilation can cause atrial 
fibrillation and result in thrombosis (63). Reduced Ca2+ handling 
ability predisposes to cardiomyocyte death and further cellular 
hypertrophy. On this background of an aged heart with limited 
functional reserve, damage following myocardial infarction (MI) 
can produce HF (64). Crucially, despite adaptive cardiac chang-
es, cardiovascular dynamics are still abnormal. For example, late 
systolic peak pressure, increased pulse wave velocity, and widened 
pulse pressure hypertension disrupt laminar flow that would nor-
mally trigger protective eNOS expression, resulting in endothelial 
dysfunction, atherogenesis, and CAD (65).

Prosenescence stressors increase in aging heart and vasculature. 
Despite being a largely nondividing cell type, cardiomyocytes 
from aged rats (66) and mice (67, 68) show telomere shorten-
ing, as does healthy human heart tissue (69). Telomeric DNA is  
particularly susceptible to DSB-inducing oxidative stress (70)  
and accumulates DNA-damage foci with age (71), potentially 
explaining telomere dysfunction in noncycling cardiomyocytes. 
However, cell-cycle reentry of a small fraction of cardiomyocytes 
has been reported (72). Aged cardiomyocytes also show increased 
oxidative damage of mitochondrial lipids (73), mitochondrial 
dysfunction (74, 75), and ROS. Supporting a causal role for ROS 
in cardiac aging, old mice expressing mitochondrial-targeted  
catalase, which degrades H2O2 into water and O2, show longer 
lifespan, decreased LV hypertrophy, and reduced diastolic dys-
function (76, 77). Additional studies report significant age-related 
telomere shortening and reduced telomerase activity in human 
cardiac stem cells, a cKit-positive, CD45-negative cell type that 
replaces cardiomyocytes throughout life (78, 79).
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sis of p16Ink4a-positive cells. Lifelong removal of p16Ink4a-positive 
SNCs in BubR1-progeroid mice using INK-ATTAC profoundly 
attenuated sarcopenia, fat loss, and cataract formation (38). How-
ever, progeroid mice incompletely recapitulate the complex tis-
sue changes associated with normal aging. Furthermore, BubR1- 
progeroid mice show several cardiovascular phenotypes, includ-
ing arrhythmia, aortic VSMC loss, and intolerance to isoprotere-
nol stress that are not corrected by SNC killing via INK-ATTAC in 
this model of aging (117).

To test the contribution of SNCs to normal aging, includ-
ing cardiovascular aging, transgene-mediated SNC killing was 
repeated in naturally aged mice. Wild-type INK-ATTAC mice 
were aged to 12 months (approximately middle-aged) before 
receiving twice-weekly administration of AP20187 or vehicle to 
remove SNCs (10). SNC clearance resulted in a sex- and strain- 
independent increase in median lifespan with corresponding 
reduction of SNC markers in several vital organs, including heart 
and kidney. At 18 months, SA β-gal–positive SNCs were identified 
by transmission electron microscopy in the visceral and serous 
pericardium of the heart as well as the renal proximal tubule 
epithelium. AP20187 treatment removed these SNCs, thereby 
blunting age-related cardiomyocyte hypertrophy and glomeru-
losclerosis. In the heart, SNC clearance increased tolerance to a 
lethal dose of isoproterenol, a β-adrenergic agonist, and reduced 
development of diastolic dysfunction when mice were challenged 
with sublethal, chronic isoproterenol (10). In the kidney, SNC 
removal blunted activity of the renin-angiotensin-aldosterone 
system (RAAS), reducing glomerulosclerosis and blood urea nitro-
gen, a surrogate marker of kidney function. Although these results 
are consistent with local action of pericardial and renal SNCs, 
INK-ATTAC also clears SNCs at other distal sites, such as adipose 
and skeletal muscle. Tissue-specific SNC clearance models will 
be necessary to disentangle global versus local effects of SNCs on 
cardiovascular function.

Senescent cells drive age-related  
cardiovascular diseases
Although SNCs accumulate with normal aging in cardiovascu-
lar tissues, SNCs arise locally in comparably larger numbers as 
a result of cellular stressors experienced during age-related dis-
eases. We term these “secondary SNCs,” in contrast to primary 
SNCs that arise with basal aging. Primary and secondary SNCs 
may be different cell types or arise due to different stressors, 
thereby possessing distinct properties including unique SASPs. 
To illustrate the bimodal role of SNCs in age-related CVD, we 
will explore two major age-related disease processes: athero-
sclerosis and HF.

Atherosclerosis. During atherogenesis, an aberrant lipid pro-
file drives oxi-LDL retention in the subendothelial space. This 
prompts circulating monocytes to invade, where they differenti-
ate, take up oxi-LDL, and convert to foam cell macrophages (118). 
These foam cells secrete cytokines and chemokines such as IL-1α, 
TNF-α, and MCP-1 to drive further immune cell recruitment and 
form an atherosclerotic plaque (118, 119). CAD and deaths from 
atherosclerosis complications (MI, ischemic heart disease, and 
thromboembolic stroke) rise dramatically with age but can also 
occur earlier given appropriate stressors such as diabetes, meta-

Visceral and serous pericardial epithelial cells, which belong 
to the trilayered, fibrous sac sheathing the heart, also show an 
age-related increase in SA β-gal activity and express p16Ink4a (10). 
Whereas the consequence of senescence in cardiac stem cells and 
cardiomyocytes is unknown, removal of p16Ink4a-positive pericar-
dial cells during normal aging in mice blunted cardiomyocyte 
hypertrophy, normalized cardiac stress tolerance, and reduced 
expression of inflammatory factors in the heart (10). This result 
supports the existence of prohomeostatic signaling from the peri-
cardium to the ventricle that is disrupted by SNC accumulation, 
although the effect of SNCs at other sites cannot be ruled out.

Senescence also occurs with aging in both major arterial cell 
types, endothelium (103, 104) and VSMCs (105–107). Endothelial 
NO produced by eNOS normally maintains VSMCs in a nondivid-
ing, contractile state and suppresses thrombogenic and inflam-
matory signaling in endothelium. This system’s activity declines 
with age, partially because of heightened angiotensin II produc-
tion (108). Intriguingly, NO production is reportedly decreased in 
senescent endothelial cells (109, 110). Reciprocally, NO activates 
telomerase (111) to prevent endothelial cell senescence, thereby 
decreasing presentation of the proatherogenic, leukocyte-binding 
receptors VCAM1 and ICAM1 (112). Similarly, NO production may 
inhibit VSMC senescence. Aged arterial VSMCs show elevated 
expression of p16Ink4a and SA β-gal activity (105–107), potentially 
due to aberrant cell-cycle reentry that results in polyploidization, 
greater levels of the NADPH oxidase NOX4, and ROS produc-
tion. Additionally, aging raises circulating levels of angiotensin 
II, which activates the Ras signaling cascade, a well-known driver 
of oncogene-induced senescence (113), to produce VSMC senes-
cence (114, 115) and enhance NADPH oxidase expression and 
ROS production (108). The SASP factors MMP2 and IL-6 are also 
increased in aged VSMCs (116) as well as proatherogenic VCAM1, 
although whether these gene expression changes are restricted to 
senescent VSMCs is unknown.

Neutralizing SNCs prevents age-related cardiovascular impair-
ment. Approaches now exist to block the senescence program or 
kill SNCs to study their contribution to the aging process. Early 
evidence that SNCs promote aging came from a mouse model of 
accelerated aging (progeria) caused by insufficiency of the mitotic  
checkpoint protein BubR1. BubR1-insufficient mice show several  
aging phenotypes, including loss of muscle mass (sarcopenia), 
adipose atrophy, and cataract formation. Dysfunctional skeletal 
muscle, fat, and eyes in BubR1-insufficient mice prematurely accu-
mulate high levels of SNCs. When SNC formation was blunted by 
genetic deletion of the senescence effector p16Ink4a, development 
of these degenerative phenotypes was blocked (16). However, this 
strategy could not distinguish between cell-autonomous deleterious 
effects of senescence, such as inhibited cycling of tissue-repairing 
progenitor cells, and paracrine effects of SNCs, such as the SASP.

To discriminate between these possibilities, an SNC suicide 
transgenic mouse (INK-ATTAC mouse), which permits INK-
linked apoptosis through targeted activation of caspase, was 
developed (38). Briefly, this transgenic uses a 2.5-kbp minimal 
fragment of the p16Ink4a promoter to drive expression of a GFP 
reporter and an FKBP/caspase-8 fusion protein in p16Ink4a-positive 
SNCs. When mice are treated with an FKBP cross-linking ligand, 
AP20187, caspase-8 dimerizes and activates to trigger apopto-
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Figure 2. Cellular senescence is a cause and consequence of atherosclerosis. Both primary (age-derived) SNCs and secondary (atherosclerosis-derived) SNCs 
may promote atherosclerosis. In young arteries (top left), senescence burden is low. Vessel homeostasis is achieved by endothelium-derived NO acting on 
VSMCs, promoting vasodilation, quiescence, contractile phenotype, and endothelial health. During normal aging (top right), endothelial cells and VSMCs 
undergo primary senescence (red cells). Loss of NO tone may arise due to failure of endothelial cell homeostasis, leading to endothelial dysfunction and 
senescence. Excessive VSMC proliferation in aging vessels may also drive VSMC senescence, further exacerbating VSMC hyperplasia via SASP-mediated 
growth factor release. Whatever the causal chain, loss of NO tone converts VSMC to the synthetic phenotype, prompting VSMC hyperplasia, medial thicken-
ing, collagen overproduction, and synthesis of elastin-degrading metalloproteases (MMPs), collectively producing vessel stiffening, widened pulse pressure, 
hypertension, and increased cardiac afterload. Vessel stiffening interrupts normal shear stress signals that suppress VCAM expression, with proatherogenic 
effects. Absence of risk factors in late life may produce late-onset cardiovascular disease (CVD; bottom right). Alternatively, early-life CVD risk factors (e.g., 
diabetes, hypertension, metabolic syndrome, and dyslipidemia) promote aberrant oxi-LDL accumulation in the subendothelial space, initially producing 
secondary senescent foam cell macrophages. At later stages of disease, secondary senescent foamy endothelium and VSMCs also arise (green cells). This 
faster trajectory results from intense, proatherogenic stress and results in early CVD (bottom left). The relative contribution of primary and secondary SNCs 
to atheroprogression probably varies with life history and personal risk factors, but both types likely contribute to key features of clinical disease, including 
thinning of the fibrous cap as a result of VSMC growth arrest and SASP-derived collagenases and elastases; enhanced lesion growth due to expression of 
VCAM and ICAM; and lesion-associated aneurysm resulting from medial elastin degradation.
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bolic syndrome, and an abnormal circulating lipid profile (120). 
One interpretation of these facts is that the aging cardiovascular 
system becomes abnormally sensitive to proatherogenic stressors. 
Alternatively, the high rate of atherosclerosis in the elderly may 
represent the inevitable result of slow progression of subclinical 
disease over decades, and therefore atherosclerosis may not be a 
“true” age-related disease (i.e., one in which biological age rather 
than length of disease progression is a causal factor).

Although this question is largely unresolved, proatherogenic 
mechanisms are active in primary SNCs of normally aging arter-
ies (Figure 2, top right). Dysfunctional and senescent endothelial 
cells present VCAM1 and ICAM1, which bind circulating mono-
cytes to drive their invasion (112). Senescent endothelial cells in 
vitro also show apoptosis susceptibility and impaired tight junc-
tion formation, both of which could enhance oxi-LDL retention in 
the subendothelium (121, 122). EPC senescence may contribute in 
part to endothelial cell dysfunction through failed repair. IL-6 and 
MCP-1 produced by aged VSMCs may contribute to the athero-
genic milieu (123, 124).

Secondary SNCs also arise during atherogenesis, thereby driv-
ing lesion expansion and deleterious remodeling by producing an 
inflammatory, proteolytic environment (refs. 7, 13–15, 125, and 
Figure 2, bottom left). Early “fatty streak” lesions contain p16Ink4a- 
positive, SA β-gal–positive foam cell macrophages and can be  
largely ablated in the Ldlr–/– model of atherosclerosis using  
transgenic or pharmacological approaches to kill SNCs (7). This 
preventative benefit of SNC killing extends to intermediate and 
advanced lesions, which contain senescent foamy endothelium 
and VSMCs in addition to senescent foam cell macrophages. Mech-
anistically, SNC removal reduced expression of the atherogenic 
cytokines IL-1α and TNF-α, as well as MCP-1 (7). Importantly, SNC 
removal blocked thinning of the fibrous cap, a VSMC- and extracel-
lular matrix–rich structure that contains the plaque to prevent rup-
ture, clotting cascade engagement, and thromboembolism (126).  
A cap-stabilizing effect of senolysis is consistent with direct  
production of elastase and collagenase by SNCs as part of the SASP. 
Indeed, a study using GFP expression in Ldlr–/– INK-ATTAC mice 
to flow-sort lesional SNCs showed that these cells express higher 
levels of the elastase MMP12, the collagenase MMP13, IL-1α, and 
MCP-1 than their nonsenescent counterparts (7). Age-related ath-
erosclerosis likely features contributions from primary and second-
ary SNCs, and occurs earlier or later in life depending on whether 
proatherogenic stressors or aging make the larger contribution, 
respectively (Figure 2, bottom right).

By contrast, the proliferative senescence arrest may initially  
restrict atherosclerotic lesion development. In murine models of 
high-fat diet–induced atherogenesis, deficiency of any of the senes-
cence effector genes p21 (127), p27Kip (128), and p53 (129) resulted 
in greater lesion burden than controls. Similarly, human genome-
wide association studies have shown that polymorphisms in the 
senescence-modulating 9p21.3 locus increase the risk of MI and 
stroke (130, 131). This locus contains several senescence effectors, 
including the CDKN2a gene, which codes for p19Arf and p16Ink4a, and 
the CDKN2b gene, encoding p15Ink4b. 9p21.3 also contains CDKN2b-
AS1, encoding the long noncoding RNA ANRIL, whose expression 
directs inhibitory methylation of CDKN2a/b (132, 133). Presence of 
the CAD 9p21.3 risk locus increases ANRIL expression to inhibit 

senescence and promote proliferation in lesional VSMCs (134–136) 
and macrophages (134). This dichotomy may be analogous to the 
role of senescence in cancer, where senescence initially disarms 
preneoplastic cells but persistent SASP production promotes future 
carcinogenesis (8, 9, 137).

Heart failure. Although aging itself does not cause HF, the aging 
heart is predisposed to develop HF for multiple reasons. Adaptations 
that the aging heart undergoes to preserve resting systolic func-
tion, such as LV thickening (138), cardiomyocyte hypertrophy (139), 
and decreased response to β-adrenergic stimulation (140), deplete 
the functional reserve that can be deployed to deal with disease or 
heightened demand (41). Additionally, repair processes such as 
cardiomyocyte replacement are impaired (141), and others, such 
as fibrosis, can become exaggerated and maladaptive. Finally, fur-
ther injury from ischemic disease, such as CAD, increases with age.  
Given that an increasing proportion of elderly HF patients main-
tain normal systolic function (HF with preserved ejection fraction; 
HFpEF), a difficult-to-treat subtype of the disease, the need for new 
preventative and therapeutic strategies is paramount (5).

Cellular senescence drives these three aspects of HF predis-
position in the aging mouse heart (Figure 3, A and B). For exam-
ple, old but not young mice show increased LV mass and diastolic 
dysfunction when challenged with repeated, low-dose isoprotere-
nol, a β-adrenergic agonist (10). In contrast, old mice cleared of 
SNCs via INK-ATTAC do not show such dysfunction (10). SNC 
killing also attenuates other HF risk factors, including diet-in-
duced atherogenesis (7) and age-related cardiomyocyte hypertro-
phy (10), potentially by normalizing homeostatic signaling from  
pericardium to myocardium (Figure 3A).

SNCs also accumulate during HF itself (Figure 3C). Aged 
human hearts with dilated cardiomyopathy show greater num-
bers of p16Ink4a -positive, cKit-positive progenitor cells and car-
diomyocytes with short telomeres than age-matched controls 
(142). Although cell division was increased in both cell types 
during HF and cardiomyocytes become hypertrophic, this could 
not match the rate of cell death or compensate for reduced 
function, resulting in HF (142). Similarly, human cardiac stem 
cells (hCSCs) from failing hearts showed increased p16Ink4a and 
inflammatory factor expression (78). Supporting a causal role for 
senescence in HF, telomerase-deficient mice show enhanced 
cardiomyocyte death and hypertrophy leading to HF (143). Simi-
larly, senescence-accelerated mice (SAM), a naturally progeroid 
mouse strain, develop HFpEF with LV hypertrophy, atrial dila-
tion, and fibrosis when fed a high-fat/high-salt diet that drives 
endothelial cell senescence (144).

In addition to perhaps removing cardiomyocytes with prolif-
erative potential from the cycling pool via cell-cycle arrest, senes-
cence in HF may also drive signaling changes that predispose to 
cardiomyocyte death or dysfunction. For example, RAAS hyperac-
tivity occurs in HF, driving aberrant ROS production and cardio-
myocyte death (145–147). Age-related senescence in the kidney 
enhances expression of angiotensin-converting enzyme (ACE) 
and increases levels of the angiotensin II receptor, driving glo-
merulosclerosis (10). It is plausible that SNCs in the aged or failing 
heart also aberrantly elevate RAAS activity, but this is currently 
unknown. Given that ACE inhibitors are a mainstay of HF therapy  
(148) and RAAS hyperactivity is a key driver of age-associated 
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cardiovascular inflammation (149), investigating the link between 
senescence and the RAAS is a high priority.

HF patients often also show increased myocardial fibrosis, 
which interrupts normal propagation of electrical signals and 
drives arrhythmias (Figure 3C and ref. 150). Interestingly, the 
senescence cell-cycle arrest can halt expansion of fibrosis (151, 

152) (Figure 3C). Mice lacking the senescence effector p16Ink4a 
or p53 showed greater fibrosis and greater diastolic dysfunction 
when challenged with pressure overload aortic banding than con-
trols with an intact senescence program (153). Similarly, in post-
MI ventricle, arrhythmic atria, and pressure-overloaded ventri-
cle, p16Ink4a-positive and SA β-gal–positive cells are detected in 

Figure 3. Senescent cells drive heart failure. (A) In young hearts, myocardium homeostasis, normal tissue function, and excess cardiac reserve are 
maintained through de novo formation of cardiomyocytes from resident cardiomyocyte stem cells (CMSCs) or division of incompletely differentiated, 
small cardiomyocytes. New cardiomyocyte formation matches a relatively low rate of cardiomyocyte apoptosis (purple cells). Appropriate CMSC function, 
including return to quiescence and suppression of cardiomyocyte death, may be maintained by homeostatic signals arising from the pericardium. (B) In 
disease-free, aging hearts, a declining ability to replace apoptotic cardiomyocytes due to progenitor dysfunction/senescence conspires with an increasing 
rate of cardiomyocyte death to produce compensatory hypertrophy. In the resting state and in the absence of further CVD, this adaptive change partially 
preserves heart function but predisposes to heart failure upon further stress. Interestingly, the INK-ATTAC SNC-killing transgenic strategy efficiently 
removes SA β-gal–positive pericardial SNCs from aged mice and prevents both cardiomyocyte hypertrophy and declining β-adrenergic stress tolerance. 
Based on this, we propose the existence of pericardium-derived prohomeostatic signaling that is disrupted during aging by pericardial SASP factors, 
although similar disruptive signaling may arise from senescent cardiomyocytes, CMSCs, or other cell types in the myocardium. (C) When challenged with 
cardiovascular stressors, such as ischemia in coronary artery disease, diabetes, or hypertension, the aged myocardium exceeds its functional reserve and 
decompensates. Apoptotic cardiomyocytes are not replaced, hypertrophy no longer preserves function, and excessive fibrosis leads to conduction defects, 
arrhythmia, and HF. To some extent, fibroblast senescence restricts fibrosis, but the long-term presence of these and other SNC types in the failing heart 
is suspected to be deleterious. It is currently unclear whether SNC removal can improve established heart failure or merely blunts development.
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lic retention of p53 and SNC death (165); HDAC inhibitors (166); 
HSP90 inhibitors (167); piperlongumine (168); and dasatinib and 
quercetin (169). However, more work is needed to independently  
confirm the senolytic properties of these molecules and determine 
to what extent their healthspan benefits derive from SNC killing. 
For example, dasatinib and quercetin do not kill senescent IMR-90 
(human fetal lung) fibroblasts (165) or reduce p16Ink4a expression  
in aged aortas (170), but nonetheless improve vasomotor function 
in aged mice (170).

The major challenges currently facing therapeutic exploita-
tion of senolysis are senolytic selectivity and potency. Local 
administration of senolytic drugs may help resolve both of these 
concerns by achieving high local drug concentrations at the site of  
pathology. This has been demonstrated recently for the senolytic 
UBX101, which reduced senescent chondrocyte load and improved  
disease in a murine injury-induced arthritis model following  
intra-articular injection (171). Similar local administration of 
senolytics may be of use in treating CVD. For example, sirolimus- 
eluting stents are frequently used during coronary artery stenting  
in CAD to prevent VSMC proliferation, immune cell infiltration, and  
vessel restenosis (172). A senolytic-eluting stent could provide the 
antiatherogenic benefits of systemic navitoclax administration 
without as many concerns about off-target effects. Alternatively, 
a senolytic-eluting “patch” could be applied directly to the heart 
surface to remove SNCs following MI.

Conclusion and outlook
In the last two decades, SNCs have emerged as bona fide driv-
ers of aging and age-related CVD. The evidence supporting 
this consists of detection of SNC biomarkers in diseased tis-
sues; alteration of disease pathophysiology following genetic 
disruption of the senescence program; disruption of disease 
course via transgene-mediated SNC killing; and modification 
of pathology by administration of senolytics. Collectively, these 
advances suggest that SNCs are a viable target for senotherapy 
to treat and possibly prevent CVD.

Despite our growing understanding of in vivo SNC biology, 
major knowledge gaps continue to hamper the translational devel-
opment of SNCs as a therapeutic target. Crucially, a consensus on 
universal SNC biomarkers is still lacking (reviewed by Sharpless et 
al., ref. 173). The current gold standard is to use a panel of mark-
ers, such as high p16Ink4a, SASP expression, and SA β-gal activity, 
to detect SNCs. However, this approach risks false negatives aris-
ing from genuine SNCs that do not express canonical markers, 
and false positives due to biological use of these proteins outside 
of senescence. For example, some speculate that macrophages 
recruited to SNCs as part of immune surveillance make up a large 
portion of p16Ink4a-positivity and SA β-gal signal in aged tissue 
without being senescent per se (174–176).

Refining SNC biomarkers depends on building a comparative 
understanding of the in vivo biological properties of SNCs. In and 
of itself, this is a major knowledge gap. For example, how does the 
SASP change with SNC type, with prosenescence stress, and over 
time? Do all in vivo SNCs share the same susceptibility to a given 
senolytic, or do some SNCs favor different apoptosis-resistance 
mechanisms? Finding answers to these simple-to-frame questions 
is currently hindered by lack of tools to extract and purify in vivo 

fibrotic regions (153–155). In atrial fibrillation (AF) patients, higher 
rates of AF recurrence and fibrosis were found in individuals with  
lower SNC numbers (154). Although restriction of proliferation 
is a plausible mechanism for the antifibrotic effect, expression of 
matrix-degrading collagenases or other tissue remodeling factors as 
part of the SASP of senescent myofibroblasts may also restrict fibro-
sis (37). It is unclear whether eliminating senescent fibroblasts from 
the failing heart would have a beneficial or a deleterious effect.

Senotherapy’s potential for treating  
or preventing CVD
SNCs are an attractive target for preventing and treating CVD for 
several key reasons. First, SNCs accumulate slowly throughout  
the lifespan, are nondividing, and, in relatively small numbers, 
“poison” the tissue microenvironment, leading to organ dysfunc-
tion and heightened susceptibility to age-related disease. These 
characteristics suggest that SNC-killing therapies (senolytics) 
could be administered at infrequent intervals. Importantly, unlike 
cytotoxic anticancer chemotherapy, selection of drug-resistant 
clones is unlikely to produce therapy resistance during senolysis.

Second, the beneficial functions of SNCs are temporally 
restricted, allowing senotherapy’s timing to selectively neutralize 
deleterious SNCs. For example, the senescence cell-cycle arrest 
assists in organ patterning (156, 157) and placental syncytiotro-
phoblast formation (158) during embryogenesis, which would be 
irrelevant for treating age-related CVD. SNC secretion of PDGF-
AA (37) has also been reported to assist in wound closure. In most 
cases of trauma, this would simply require suspending senolytic 
therapy temporarily. However, in nonhealing chronic ulceration, 
a common malady in diabetic patients with peripheral artery dis-
ease (159), use of senolytics may be contraindicated (although 
whether SNCs exist in chronic wounds or have a similar function 
as in normal wound closure is unknown). Finally, by permitting 
cell-cycle arrest and then removing SNCs, senolysis may preserve 
select beneficial functions of SNCs, such as restriction of fibrosis 
in HF and tumor suppression. Accordingly, removing SNCs in old 
mice using the transgenic INK-ATTAC approach does not lead to 
greater fibrosis or cancer incidence (10).

Third, and finally, the first generation of SNC-killing mole-
cules have been described (see Childs et al., ref. 17, for an exten-
sive overview). Existing senolytics work by targeting prosurvival 
adaptations that are engaged in SNCs but not active in replication- 
competent or terminally differentiated cells. For example, SNCs 
generally resist apoptosis despite macromolecular damage, in 
part by upregulating the antiapoptotic proteins BCL-2, BCL-XL, 
and BCL-W (160–162). Inhibition of BCL-family members using 
navitoclax (ABT-263) licenses BAX and BAD assembly at the 
mitochondrial outer membrane, forming the mitochondrial trans-
membrane pore and releasing cytochrome c to trigger the apop-
totic caspase cascade (163). Navitoclax has proven able to remove 
SNCs during atherogenesis to blunt further lesion development (7) 
and kill hematopoietic SNCs to rejuvenate aged or irradiated mar-
row (164). The related BCL-W/BCL-XL inhibitor venetoclax also 
clears irradiation-induced lung SNCs and skin SNCs produced by 
p19Arf overexpression (162). Other molecules that reportedly have 
senolytic properties include a peptide FOXO4 mimetic, which 
titrates endogenous FOXO4 away from p53, triggering cytoso-
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tracked over time. Achieving the goal of a comparative “atlas” of 
SNCs across aged and diseased tissues will both clarify which SNC 
biomarkers are most universal and uncover new biology.
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SNCs across tissues before analysis by high-throughput transcrip-
tomic or proteomic means. While the INK-ATTAC reporter mouse 
has been used in several studies to separate p16Ink4a-positive and 
-negative cell fractions, it has not been successfully applied to pro-
duce an “atlas” of SNCs.

The next generation of SNC reporter mice will hopefully sur-
mount the major technical challenges: low SNC number in vivo, 
age-related autofluorescence, and the need to rapidly acquire and 
process isolated cells to avoid artifactual changes to cell proper-
ties. This tool should also be compatible with means of identify-
ing cell type, such as coimmunofluorescence staining or electron 
microscopy, and, if possible, be inducible such that SNCs can be 
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