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Introduction
Regeneration is the ability to recreate original tissue architec-
ture and function following damage without leaving a scar (ref. 
1 and Figure 1). Far from mythological contrivance, this mecha-
nism is very much present in nature yet varies dramatically 
across metazoan species (2) and with age (3); think of an axo-
lotl or a salamander, which seamlessly regrows its limbs after 
amputation (Figure 1A). Mammals share a similarly remark-
able ability to regenerate tissue during prenatal development 
but lose most of it in adulthood. Adult injuries are repaired as 
opposed to regenerated, replacing functional tissue parenchy-
ma with a meshwork of extracellular matrix (ECM). The liver 
is one of the few organs in the mammalian body that defy this 
paradigm, as it can regenerate efficiently from a wide range of 
physical and toxic injuries (4). Adult regenerative powers are 
nonetheless finite, even in the liver. The process of regenera-
tion following an acute insult is characterized by a transient cel-
lular and molecular response whose resolution is as important 
as its emergence for the tissue to reestablish homeostasis (5). It 
thus follows that switching-off mechanisms must be embedded 
within the process of wound healing because the same path-
ways that promote regeneration, when overstimulated, pro-
gressively drive scarring and degeneration of the tissue in a pro-
cess known as fibrosis (6). As a parallel to fibrosis mechanisms, 
we can think of how cell proliferation, when uncontrolled, may 
eventually progress into tumorigenesis. In this Review we will 
explore the delicate balance that exists between regeneration 
and fibrosis, with a special focus on the liver as an organ that is 
familiar with both processes.

Liver regeneration
In the absence of injury, the liver epithelium is maintained by the 
slow turnover of hepatocytes (7) and/or ductal cells (8) within 
their own compartments. Experiments in rats have shown that 
between 0.2% and 0.5% of hepatic cells are dividing at any given 
time point (9). However, this mitotic quiescence is misleading 
because, if challenged, the hepatic tissue displays a remarkable 
capacity for regeneration and reinstalls homeostasis within days. 
Reminiscent of limb regrowth in amphibians, up to 70% of the 
liver can be surgically resected and the organ will grow back to its 
original size through compensatory proliferation of both the epi-
thelium (hepatocytes and biliary duct cells) and the stroma, com-
posed of Kupffer cells (macrophages), liver sinusoidal endothelial 
cells (LSECs), hepatic stellate cells (HSCs), and portal fibroblasts 
(10). Notwithstanding, the hepatectomized liver is not considered 
injured nor “damaged”; regeneration occurs from the unscathed 
lobe(s) as a result of the organ’s ability to sense insufficient size 
(Figure 1B). The hepatectomy-induced healing response thus has 
clinical relevance for live-donor transplants and tumor resec-
tions but is of less consequence to chronic liver pathologies like 
nonalcoholic fatty liver disease and cirrhosis, which account for 
high rates of morbidity worldwide (11, 12). Hepatic epithelial cells, 
hepatocytes in particular, are susceptible to pathologies of this sort 
because of their daily exposure to exogenous and endogenous tox-
ins (alcohol, viruses, and fatty acids, among others) as part of their 
metabolic and digestive functions. This has subjected the tissue 
to a unique evolutionary pressure to develop robust, yet not infal-
lible, mechanisms of regeneration against toxic injury (Figure 1C).

Epithelial progenitor cells are thought to compensate for tis-
sue loss in many adult tissues, in what has been hypothesized as 
a reiteration of developmental mechanisms (13–17). In the liver, 
this idea resonates loudly, considering that hepatoblasts are bona 
fide bipotential precursors of bile duct cells and hepatocytes dur-
ing organogenesis (14). Pioneering work in adult rat livers has 
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could originate from hepatocytes as an injury escape mechanism 
(35). Recently, using lineage tracing approaches, Raven and col-
leagues have unequivocally shown that ductal progenitors con-
tribute to the regeneration of the hepatocyte lineage in murine 
livers with impaired hepatocyte proliferation caused by both p21 
overexpression and loss of Itgb1 (encoding integrin β1) (36).

Regardless of the cell-of-origin debate, what we can gather 
from these studies is an exceptional degree of epithelial plastic-
ity in the regenerating liver (reviewed more exhaustively else-
where, refs. 37–39). This is intimately linked to the source and 
extent of tissue damage and suggests an instructive role for 
the microenvironment. Indeed, the recovery from epithelial-
specific injuries relies on auxiliary responses by nondamaged 
stromal cells that become activated in situ and get recruited 
from the bloodstream. Several paracrine signaling pathways, 
whose ligands are of stromal origin — WNT (40–44), hepato-
cyte growth factor (HGF) (43, 45, 46), fibroblast growth factor 
(FGF) (47) — can directly stimulate epithelial cells to reenter 
cell cycle, dedifferentiate, and/or redifferentiate, and have been 
shown to be essential for regeneration (48). Wound healing is 
further characterized by the transient remodeling, de novo syn-
thesis, and deposition of ECM, which releases latent cytokines 
(e.g., pro-HGF) (49) and ensures epithelial cell repositioning 
within the 3D histoarchitecture (50). A niche of fibrillar colla-
gen and laminin invariably surrounds hepatic progenitor cells 

also shown a robust damage-induced expansion of “oval-look-
ing” cells expressing developmental markers and pulse-chasing 
into both mature hepatocytes and biliary ducts (18–20). Nonethe-
less, the cell of origin and the regenerative potential of these cells 
remain contentious to this very day. Evidence supporting biliary 
ancestry comes from lineage tracing experiments in Sox9-CreER 
(21) and Opn-CreER (22) mice, and from the fact that whole duc-
tal tree fragments (23) or ductal marker–enriched (e.g., EpCAM+, 
MIC1-1C3+, CD24+, CD133+) single cells self-renew in vitro as 2D 
monolayers or 3D organoid cultures (24–27) while maintaining 
potency toward the hepatocyte lineage. Several recent studies 
have, however, shown minimal regeneration of the hepatocyte 
parenchyma by ductal-derived progenitors in vivo, in contrast 
to the robust contribution from hepatocytes themselves (8, 28–
30). Still, the clinical reality is that “ductular responses” are fre-
quently observed in patients with chronic liver diseases (31, 32), 
where hepatocytes are mostly senescent (33). Conditional dele-
tion of Mdm2 in up to 98% of hepatocytes, which causes them 
to senesce, activates a vigorous progenitor response that corre-
lates with the full recovery of liver function in mice (27). Simi-
lar results have been observed in zebrafish livers after extensive 
hepatocyte loss (34). On the other hand, mature hepatocytes 
have been shown to undergo reversible ductular metaplasia in 
chronically damaged livers, regenerating up to 60% of their lost 
cell numbers, which suggests that part of the progenitor pool 

Figure 1. Coping with injury: regeneration versus 
repair. (A) Lower vertebrates, such as axolotls, 
salamanders, and fish, are able to regenerate 
severed limbs through a process that recon-
stitutes original tissue anatomy and function 
without leaving a scar (a meshwork of ECM). 
Mammals may similarly regenerate complex 
tissues during embryogenesis, but lose most of 
this capacity in adulthood. (B) The liver is one of 
the few adult mammalian organs that retains a 
remarkable ability to regenerate itself. Resec-
tion of up to 70% of the liver mass via partial 
hepatectomy leads to compensatory growth from 
the intact tissue and fully restores organ size in a 
matter of days, similarly to axolotl limb regrowth. 
However, the hepatectomized liver is typically 
not injured or “damaged,” and regeneration is a 
result of the organ’s ability to sense insufficient 
size. (C) The liver may also regenerate following 
injury by exogenous and/or endogenous agents 
(e.g., alcohol, hepatitis B/C viruses, fatty acids) 
that cause hepatocyte death. This process is 
characterized by an inflammatory reaction and 
ECM synthesis/remodeling. However, if the dam-
aging insult persists, the tissue will be repaired 
instead of regenerated, resulting in excessive 
scarring, known as fibrosis, that alters histoarchi-
tecture and hinders optimal tissue function.
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(TAZ), which may also negatively regulate WNT (55) and TGF-β 
signaling (56), respectively. In the liver, defects in various com-
ponents of the Hippo pathway lead to hepatomegaly and tumor-
igenesis due to uncontrolled proliferation of both hepatocytes 
and hepatic progenitors (57, 58). Moreover, YAP also drives HSC 
activation and matrix synthesis (59, 60), suggesting that Hippo 
signaling may simultaneously modulate regeneration and a 
maladaptive response leading to fibrosis (see below).

Liver fibrosis and its cellular effectors
Damage-induced matrix deposition is a transient phenomenon 
of the regenerative response, and successful healing entails its 
eventual removal (61, 62). Fibrosis occurs when ECM proteins 

in the damaged liver, and loss of contact with specific matrix 
proteins may stimulate differentiation of the progenitor pool, as 
shown for laminin (51–53). The regeneration of the liver follow-
ing acute injury thus requires a coordinated process of epithelial 
and stromal interactions that feed back onto one another until 
homeostasis is reestablished. The cessation of healing is albeit 
a process that is poorly understood. Hepatectomy studies point 
toward the existence of a “hepatostat” system that controls tis-
sue size for optimal performance (4). In other organs, the Hippo 
pathway has been shown to limit tissue overgrowth by sensing 
cellular density and inactivating the proliferative, antiapoptotic 
program driven by Yes-associated protein (YAP) (54) and its 
paralog, the transcriptional coactivator with PDZ-binding motif 

Table 1. Experimental animal models of liver fibrosis

Models of liver fibrosis Animal Protocol/method Onset of fibrosis References
Toxic/xenobiotics
 Carbon tetrachloride (CCl4) Rats s.c. or i.p. twice weekly, 0.2 ml/100 mg body weight of CCl4 in oil (1:1 ratio) >4–6 weeks 168, 169

Mice i.p., every 5 days, 1 μl/g body weight of CCl4 in oil (1:7 ratio) 4 weeks 170
 Dimethylnitrosamine (DMN) Rats i.p., 10 mg/kg body weight, twice weekly >4 weeks 171, 172

Mice i.p., 10 mg/kg body weight, thrice weekly >3 weeks 173
Dogs Orally twice weekly or intraportally once weekly >3–6 weeks 174, 175

 Thioacetamide (TAA) Rats At 300 mg/l in drinking water >2–3 months 176
Mice At 200 mg/l in drinking water >3–4 months 177

i.p., thrice weekly, 150–200 mg/kg body weight >6 weeks 178
 3,5-Diethoxy-carbonyl-1,4- 
 dihydrocollidine (DDC)

Mice Supplemented (0.1%) in solid diet >4–8 weeks 179

 Ethanol Rats Intragastric infusion of ethanol (25%–47% of calories) and high-fat diet >3 months 180
Mice Liquid diet with 5% ethanol for 10 days, then 1 dose 5 g/kg body weight by gavage Damage, no overt fibrosis 181

Baboons Liquid diet with ethanol (50% of calories), twice a day >6 months 182

Nutritional
 Choline-deficient, ethionine- 
 supplemented (CDE) diet

Mice Choline-deficient diet supplemented with 0.15% ethionine in drinking water >2 weeks 183

Rats >10 weeks 184
 Methionine- and choline-deficient  
 (MCD) diet

Mice Methionine- and choline-deficient diet 8–10 weeks 185

Rats 10 weeks 186, 187
 Methionine- and choline-deficient,  
 ethionine-supplemented (MCDE) diet

Mice Methionine- and choline-deficient diet supplemented with 0.15% ethionine  
in drinking water

1–3 weeks 188

Surgical
 Bile duct ligation Mice Common extrahepatic bile duct is ligated 3 weeks 189

Rats >4 weeks 190
Dogs >4 weeks 191

Monkeys >8 weeks 192

Genetic
 TGF-β1 Mice Dox-repressible expression of TGF-β1 transgene, conditional to hepatocytes (Cebpb-tTA) 10 inductions 193

Mice LPS-inducible expression of fusion transgene CRP–TGF-β1, conditional to hepatocytes Only mild fibrosis 194
 Pdgfb Mice Expression of Pdgfb transgene, conditional to hepatocytes (albumin promoter) >5 months postnatally 195
 Mdr2 KO Mice KO of the phospholipid transporter Mdr2 >3 months postnatally 196
 Nemo KO Mice KO of the NF-κB essential modulator (Nemo) conditional to liver parenchymal cells (Alfp-Cre ) >6–12 weeks postnatally 197
 Tak1 KO Mice KO of TGF-β–activated kinase 1 (Tak1) conditional to liver parenchymal cells (Alfp-Cre) >6–12 weeks postnatally 198
 Bcl-xl KO Mice KO of the antiapoptotic Bcl-xl conditional to hepatocytes (albumin-Cre) >5 months postnatally 199
 Mdm2 KO Mice β-Naphthoflavone–inducible KO of Mdm2 conditional to hepatocytes (Ah-Cre) >3 months 27

Immunological
 2-OA-BSA/α-GC Mice Immunization with 2-octynoic acid and BSA, then exposure to α-galactosylceramide >4–12 weeks 200
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cells from the bone marrow (71). In severely damaged livers, epi-
thelial cells have also been proposed to feed the myofibroblast 
pool through an epithelial-to-mesenchymal transition (EMT) 
(72). The support for EMT has nonetheless been overreliant on 
the partial upregulation of mesenchymal markers in vitro, and a 
committed switch toward the myofibroblast lineage in vivo has 
not yet been formall proven (73, 74).

The transition from quiescent “cell X” (be it HSC, portal fibro-
blast, or monocyte) to active myofibroblast-like phenotype is a mal-
leable process wherein the chronicity of the damage stimuli may 
generate a mixed spectrum of profibrotic cell signatures. While 
HSC-derived myofibroblasts have been reported to revert to quies-
cence readily (75, 76), myofibroblasts originating from portal fibro-
blasts are locked in a more mature/committed state and are unlikely 
to transition back (68). Understanding disease progression over the 
duration of injury as well as profibrotic cell heterogeneity is thus 
important when considering antifibrotic treatments.

Cellular and molecular fluctuations balance 
regeneration and fibrosis
Regeneration and fibrosis share a common cascade of injury-
induced events that bifurcates as a result of the chronicity of the 
damage (Figure 2). At the core of this cascade lie time-dependent 
multidirectional interactions between epithelial, mesenchymal, 
endothelial, and immune cells (Figure 3). Inflammation is one of 
the earliest processes following injury (1), preceding the actual 
repair of the lesion, and its mechanism is tightly linked to the type 
of damaging agent (i.e., underlying etiology). Commonly, dying cells 
or foreign antigens are recognized by tissue-resident or recruited 
leukocytes of the innate immune system, causing them to express 
proinflammatory agents (like TNF-α) to further relay the “damage” 
signal (77). In that regard, in alcoholic liver disease and nonalcoholic 
steatohepatitis, overgrowth of LPS-containing gut bacteria induces 
liver-resident macrophages to produce reactive oxygen species and 

accumulate in excessive amounts, leading to scarring that distorts 
the normal layout and stiffness of the tissue. Experimental mod-
els of hepatic fibrosis in rodents, dogs, and monkeys, whereby tis-
sues are analyzed for collagen deposition (e.g., Sirius red staining), 
have been fundamental for studying the onset and pathogenesis 
of this disease (Table 1). As the injury becomes chronic, the once-
functional hepatic parenchyma is overtaken by an acellular mesh 
of connective tissue — mostly collagen and elastin fibers — whose 
progressive cross-linking restrains access to degrading enzymes 
and makes scar resolution increasingly difficult (63).

The specialist producers of ECM in many tissues of the body 
are myofibroblasts: proliferative and migratory cells that express 
high levels of fibrillar collagens and tissue inhibitors of metal-
loproteinases (TIMPs) (64, 65). These cells are thought to have 
diverse origins, but they share a common process of transdif-
ferentiation to acquire profibrotic traits in the context of dam-
age (66). HSCs are microvasculature-associated pericytes and 
the best-studied precursors of myofibroblasts in the liver. These 
cells transition from quiescence to an active myofibroblast-like 
state following injury, and they are the dominant contributors 
to liver fibrosis, independent of its etiology (67). The ability of 
HSCs to respond to diverse types of damage may relate to their 
widespread placement in the liver architecture, which allows 
them to act swiftly at multiple sites of injury. In contrast, portal 
fibroblasts are found exclusively around the portal tract and pre-
dominantly drive fibrogenesis in biliary disease and cholangio-
carcinomas (68). Bone marrow–recruited monocytes may also 
differentiate into ECM-producing “fibrocytes” as part of the 
inflammatory response, although transplantation studies sug-
gest that their contribution to the development of hepatic fibrosis 
is minimal compared with that of tissue-resident mesenchymal 
cells (69, 70). The activation of “local” ECM producers may not 
be a universal mechanism in the body, however, considering that 
the fibrotic lung recruits a large amount of its collagen-producing 

Figure 2. Periodicity of damage alters the ability of the tissue to return to homeostasis. (Left) In healthy individuals, a punctual tissue injury (injury 1) to 
the liver awakens a regenerative response (green curve) to reestablish homeostasis or steady-state. Repeated injuries (injuries 1 + 2) hinder regeneration 
and make the system drift into a diseased state known as fibrosis (red curve). The tissue may recover from this as time progresses if no further damage is 
applied (resolution, injuries 1 + 2 + time, yellow curve). Alternatively, fibrosis will be maintained in the face of new damage (injuries 1+2+3, red curve). Addi-
tional injuries deteriorate the tissue until it reaches a cirrhotic (1 + 2 + 3 + 4, light purple curve) or advanced cirrhotic (1 + 2 + 3 + 4 + 5, dark purple curve) 
state. Recovery from this latter scenario is very unlikely. (Right) The tissue of predisposed individuals (e.g., aged) functions at an abnormal steady-state 
that makes them prone to develop fibrosis, thus accelerating disease progression and reaching a point of no recovery earlier.
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spatially colocalize in areas of scar tissue. Depletion of macrophages 
with chemicals like gadolinium chloride and liposomal clodronate 
(96–98) or in ITGAM-DTR (also known as CD11B-DTR) transgenic 
(99) mice consistently dampens myofibroblast activation and tissue 
fibrosis in response to chronic injury. Yet macrophage populations 
are heterogeneous, and not all of them contribute equally to fibrosis 
(100). Liver-resident macrophages, known as Kupffer cells, ensure 
immunosurveillance of the tissue in homeostasis and contribute to 
the immediate response following injury partly through TNF and 
IL-6 (101, 102); however, these cells drop in numbers as inflamma-
tion progresses, while monocyte-derived macrophages increas-
ingly colonize the tissue from the bloodstream (103–105). This latter 
population, described as CD11BhiF4/80intLy6Chi, secretes high levels 
of TGF-β and the TGF-β–activating protein thrombospondin 1, thus 
supporting fibrinogenesis (104, 106).

Although seemingly profibrotic, macrophages have a far 
more complex role in the process of wound healing (99, 107). 
Mice exhibiting impaired infiltration of monocyte-derived 

TNF-α (78, 79). On the other hand, viral hepatitis is different in that 
the hepatitis C virus (HCV) escapes immune surveillance and infects 
hepatocytes directly, causing oxidative stress as well as apoptosis 
(80, 81). Mesenchymal cells reinforce the inflammatory cascade by 
upregulating leukocyte-recruiting chemokines (82–85) and adhe-
sion molecules (86), although they may also engage directly in clas-
sical innate immune roles like phagocytosis, antigen presentation, 
and T cell activation, as shown in isolated human HSCs (87). Acet-
aldehyde, the major metabolic product of alcohol, and HCV pro-
teins directly stimulate the proinflammatory and fibrogenic profile 
of HSCs (88, 89). Studies in damaged skin (and after LPS or TNF-α 
stimulation in vitro) have shown that pericytes upregulate ICAM-1 
and secrete macrophage migration inhibitory factor (MIF) to attract 
macrophages and neutrophils, which they later instruct with pat-
tern recognition and motility programs (90). Macrophages can in 
turn activate quiescent HSCs into scar-forming myofibroblasts by 
secreting factors such as TGF-β (91), PDGF (92), galectin 3 (93, 94), 
and TNF-α (95). Indeed, activated myofibroblasts and macrophages 

Figure 3. Distinct cellular landscapes characterize homeostasis, regeneration, fibrosis, and resolution in the liver. The homeostatic liver is characterized 
by rare cell proliferation and lack of de novo ECM deposition. During regeneration, epithelial replacement occurs predominantly via hepatocyte proliferation 
and, to a minor degree, through the activation of ductal progenitors. Resident (Kupffer) and bone marrow–recruited macrophages phagocytose the dead 
epithelium and launch an inflammatory cascade (e.g., TNF-α, IL-6). CXCR7/CXCR4+ LSECs provide mitogenic signals (HGF, WNT2) that sustain hepato-
cyte proliferation. HSCs transdifferentiate into myofibroblasts that deposit ECM on the wound site, although this matrix can be degraded via MMPs. In 
fibrosis, the hepatocyte compartment is highly senescent and ductal progenitor expansion becomes predominant. Monocyte-derived Ly6Chi macrophages 
(secreting TGF-β, thrombospondin 1) and CXCR4+ LSECs (secreting TGF-β, BMP2, and PDGFC) collectively enhance myofibroblast proliferation and survival. 
Myofibroblasts, in turn, secrete high levels of TIMPs, which inhibit MMPs and cause excessive matrix accumulation. A Th1- versus Th2-skewed immune 
system favors regeneration versus fibrosis, respectively. The resolution of fibrosis entails the return to quiescence/inactivation of myofibroblasts as well 
as their clearance by NK cells, γδ T cells, and Ly6Clo macrophages. High levels of MMPs contribute to matrix degradation. The mechanisms of epithelial 
replacement at this stage have not been fully elucidated.
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macrophages (e.g., Ccr2–/– mice) develop an attenuated form of 
hepatic fibrosis when persistently damaged, yet present defects 
to regress to homeostasis (108). Indeed, as part of a late-stage 
regenerative mechanism, recruited macrophages undergo a 
phenotypic switch from profibrotic (CD11BhiF4/80intLy6Chi) to 
scar-resolving (CD11BhiF4/80intLy6Clo), characterized by the 
increased expression of matrix metalloproteinases MMP13, 
MMP9, and MMP12 to clear away excess ECM, and upregulation 
of the TNF ligand superfamily member 10 (TNFSF10 or TRAIL), 
which can specifically trigger apoptosis in activated myofibro-
blasts due to their high expression of TRAIL receptors 1 and 2 
(109). This phenotypic switch of macrophages, which is gov-
erned partially by phagocytosis (106), occurs in many other tis-
sues, like muscle (110), skin (111), and lung (112), and hampering 
it may reinforce the pathogenic cycle of fibrosis. In wound heal-
ing, acute inflammation is also accompanied by a long-lasting 
adaptive immunity that is mounted by lymphocytes like T, B, and 
natural killer (NK) cells and is customized to the type of damage. 
This concept is interesting because it signifies that lifestyle, age, 
and disease history may pre-establish an important bias toward 
either regeneration or fibrosis (Figure 2). Th2 cells exacerbate 
fibrosis by secreting IL-4 and IL-13, which instigate macrophages 
to produce TGF-β (113) and myofibroblasts to deposit ECM 
(114–116); on the other hand, Th1 cells prevent scar formation by 
producing IFN-γ and IL-12, which counteract TGF-β production 
(117, 118). As a result, mice with a Th2-dominant immune sys-
tem (e.g., BALB/c mice) develop fibrosis more readily than Th1-
skewed mice (e.g., C57BL/6 mice) (119).

The liver’s resident endothelium acts as a conduit for blood-
borne proinflammatory agents that regulate early wound heal-
ing and actively secretes trophic factors for epithelial regrowth 
(43); yet somewhat paradoxically, angiogenesis is observed in 
progressive liver fibrosis (120). Recent work by Ding et al. puts 
in evidence how divergent signaling from LSECs can indeed bal-
ance regeneration and fibrosis. In acute injury, LSECs upregu-
late the chemokine receptor CXCR7, which cooperatively with 
CXCR4 signals through the DNA-binding protein inhibitor ID1 to 
produce pro-regenerative signals like WNT2 and HGF that drive 
hepatocyte expansion (43, 121). In chronic liver damage, constitu-
tive FGF receptor 1 (FGFR1) signaling in LSECs decreases their 
ratio of CXCR7 to CXCR4 expression, overriding ID1 activation 
and instead stimulating the proliferation of HSCs via secretion of 
profibrotic cytokines like TGF-β, BMP2, and PDGFC. Endothe-
lial cell–specific ablation of either Cxcr4 or Fgfr1 or, conversely, 
upregulation of CXCR7 prevents fibrosis and restores the regen-
erative program (121).

The hepatic wound healing response is characterized by tem-
poral fluctuations in gene expression, as if dictated by a molecular 
clock, and tampering with these dynamics may hinder the reac-
quisition of homeostasis. For instance, LSECs express angiopoi-
etin 2 (ANG2) in a biphasic pattern following acute parenchymal 
damage: by sharply reducing their levels of ANG2 soon after inju-
ry, LSECs downregulate TGF-β, which in turn allows hepatocyte 
proliferation; recovered expression of ANG2 later boosts VEGFR2 
levels in the LSECs in order to promote their own proliferation 
(122). BMP9, a TGF-β family member secreted by HSCs, exhibits 
remarkably similar dynamics in vivo, whereby low levels initially 

promote hepatocyte expansion and higher ones are thought to 
stimulate HSC migration afterward (123). In fibrotic/cirrhotic liv-
ers, TGF-β levels are notoriously elevated as a result of continu-
ous activation of the profibrotic program (124, 125). We could then 
hypothesize that raising the baseline of TGF-β may hinder the 
required drop in its concentration to induce hepatocyte prolifera-
tion, so that epithelial restitution (at least through the hepatocyte 
lineage; ref. 126) is overtaken by fibrosis.

Re-epithelization is the ultimate goal of the regenerative 
response. Be it through cell cycle reentry of mature cells or acti-
vation of facultative progenitors, this process relies on stromal 
signals (from LSECs, myofibroblasts, and/or macrophages) to 
fine-tune epithelial cell-fate choices according to local demand 
(48, 127). It is enticing to suggest that the expanding epithelium 
may concomitantly modulate stromal cell behavior in a positive-
feedback loop to ensure appropriate regeneration, or, conversely, 
fibrosis when dysregulated. In line with that, transplantation of 
hepatocytes in healthy livers leads to the expansion of activated 
smooth muscle actin–positive HSCs, while HSC depletion dimin-
ishes hepatocyte cell engraftment (128). Similarly, exposure to 
free fatty acids induces HSC activation and collagen synthesis 
only in the presence of hepatocytes, at least in an in vitro model 
of nonalcoholic fatty liver disease (129). Although live hepatocytes 
do signal to their surrounding stroma, hepatocyte death prevails 
in chronic liver injuries and is typically recognized by professional 
phagocytes like Kupffer cells. Phagocytosis activates the proin-
flammatory program of macrophages (130) but also induces them 
to secrete WNT to specify hepatocyte differentiation of ductal 
progenitors (40). Myofibroblasts have similarly been observed to 
engulf hepatocyte-derived apoptotic bodies, which enhances their 
survival and production of matrix (131). In addition, the severity 
of liver fibrosis in many human pathologies — including chronic 
hepatitis C and alcoholic and nonalcoholic steatohepatitis — cor-
relates closely with the amount of ductular expansion (132–134). 
Although ECM deposition chronologically precedes ductular 
proliferation, as shown in a choline-deficient, ethionine-supple-
mented (CDE) model of liver damage (135), activated ductal pro-
genitors may reinforce pathogenesis by virtue of their expression 
of profibrotic mitogens/cytokines like PDGF (136), TGF-β (137), 
insulin-like growth factor (IGF) (138), and monocyte chemoattrac-
tant protein-1 (MCP-1) (139). Prosurvival factors like IGF act on the 
biliary epithelium itself through autocrine signaling, leading some 
to hypothesize that “selfish” biliary maintenance unintentionally 
feeds the fibrotic response (140). Ductal cells may also sustain 
fibrosis indirectly by regulating the inflammatory cell milieu. Duc-
tal cell–derived lymphotoxin-β is profibrotic, not through direct 
HSC activation but instead through NF-κB–mediated induction 
of the leukocyte-recruiting molecules ICAM-1 and CCL5 in these 
cells (141). Other chemokines reported within the ductular rep-
ertoire include IL-6 (142) and IL-8 (143), albeit their expression 
requires priming by proinflammatory factors like IFN-γ.

Reversal of fibrosis: potential for therapy
For many years tissue fibrosis was considered to be a degenera-
tive disease with no possibility of regression. A seminal study 
by Okazaki and Maruyama in 1974 was the first to show col-
lagenase activity in fibrotic livers, hinting at the feasibility of 
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disease resolution under certain contexts (144). Since then, the 
liver has provided exceptional evidence of the plasticity of this 
process, where even advanced fibrotic tissues are capable of 
reacquiring homeostatic traits (refs. 6, 145, and Figures 2 and 
3). The most effective therapy for treating liver fibrosis to date 
is still to remove the damaging agent. Case in point are clini-
cal cases of cirrhotic livers arising from chronic HCV infection, 
which achieve remarkable histological regression following 
antiviral treatment (146, 147). From this we can infer that the 
liver does contain built-in mechanisms for scar resolution, but 
these become smothered or inactivated in the face of relentless 
damage. The removal of profibrotic inputs, or, conversely, the 
strengthening of antifibrotic ones, should then stimulate scar 
resolution to at least some extent.

At the ground level, the battle is enzymatic: matrix-degrad-
ing enzymes must overcome the inhibitory action of TIMPs for a 
scar to be broken down. Overexpression of enzymes like MMP1 
and MMP8 through adenoviral delivery has proven to amelio-
rate established fibrosis in rat livers (148, 149). Compounding 
the problem is the chronic persistence of myofibroblasts, which 
continuously pump TIMPs into the microenvironment, owing to 
prosurvival signaling via TGF-β and the TNF-α/NF-κB axis (150). 
A single injection of the fungal toxin gliotoxin following chronic 
carbon tetrachloride (CCl4) damage promotes myofibroblast 
apoptosis through NF-κB inhibition in these cells and significantly 
resolves hepatic fibrosis in a matter of days (151). Whether this is 
solely due to myofibroblast death is still to be determined, given 
that NF-κB is also critical for the transcription of multiple immune 
cell–derived cytokines like IL-1 (152), whose direct blockade has 
shown potential for reducing liver fibrosis (153).

Clearance of myofibroblasts by phenotypically apt immune 
cells can prove of great benefit to resolve scarring in chroni-
cally damaged tissues. Indeed, fibrosis regression in the liv-
er is accompanied by increased numbers of dendritic cells 
(DCs) (154), NK cells (155), and macrophages (106) in the tis-
sue parenchyma. While DCs directly target ECM degradation 
through MMP9 secretion (154), NK cells target activated and 
senescent myofibroblasts for apoptosis through IFN-γ–induced 
NKG2-D type II integral membrane protein (NKG2D), TRAIL, 
and FasL (156, 157). T cells expressing the γδ T cell receptor 
can also induce myofibroblast apoptosis via the Fas/FasL axis 
and thereby limit hepatic fibrosis (158). Tissue-restorative 
CD11BhiF4/80intLy6Clo macrophages are of particular therapeu-
tic interest because of their double-hit strategy: high secretion 
of MMPs and induction of myofibroblast apoptosis. A promis-
ing antifibrotic therapy would then be to increase the effective 
number of CD11BhiF4/80intLy6Clo macrophages within the tis-
sue through autologous transplants. In conjunction, blocking 
the influx of profibrotic CD11BhiF4/80intLy6Chi macrophages 
(accomplished by targeting of the CCL2/CCR2 axis, which 
attracts monocytes to the liver; refs. 108, 159) could further tilt 
the balance toward regeneration.

Profibrotic cells can also be inactivated or induced to senesce, 
as opposed to targeted for cell death. There is now growing evidence 
that myofibroblasts can revert to their original quiescent-like state, 
albeit the cell of origin may affect the plasticity of a given myofi-
broblast population (see above). Moreover, reversal to quiescence 

is never 100% successful; deactivated cells do not fully suppress 
their profibrotic gene signature and instead remain in a “primed” 
state that is capable of aggravating fibrosis upon further stimuli (75, 
76). Senescence of a myofibroblast cell dampens its ability to syn-
thesize matrix and profibrotic cytokines, yet in contrast to deactiva-
tion, this phenotype is associated with cell cycle exit and confers 
susceptibility to immune cell–mediated killing, particularly by NK 
cells (160). Replicative exhaustion, overstimulation, and oxidative 
stress are some of the mechanisms suggested to induce HSC senes-
cence. In particular, one study has shown that signaling through 
the IL-22/STAT3 axis promotes HSC senescence, and accordingly, 
IL-22 treatment ameliorates liver fibrosis in vivo (161).

The disentangling of fibrosis requires multitargeted efforts 
because of the redundancy of the pathways that sustain it, mir-
roring the complexity of anticancer therapies. What this means 
in clinical terms is that “precision medicine” based on targeted 
single therapeutics (e.g., a blocking antibody against PDGFB; 
ref. 162) is unlikely to have robust and durable effects. Cellular 
therapies are attractive because they signify a continuous/respon-
sive supply of diverse antifibrotic effectors. Interestingly, Lu and 
colleagues have shown that transplanting in vitro–expanded 
EpCAM+CD24+CD133+ ductal progenitors in damaged livers not 
only repopulates hepatocellular parenchyma but also reduces liver 
scarring, the latter through mechanisms currently unknown (27). 
Still, incorporating the right cell in the “wrong” niche can be futile; 
thus, there is an increasing need to accurately assess and model 
disease progression beyond the current invasive method of tissue 
biopsy. The clinical efforts to modulate regeneration and fibro-
sis are, after all, a game of timing: an antifibrotic therapy aimed 
at quenching ECM deposition or inflammation in the very early 
stages of fibrosis could paradoxically impair hepatic regeneration. 
Similarly, engrafting ductal progenitors in advanced fibrotic livers 
could potentiate myofibroblast activation.

Future perspectives and conclusion
Much of what we understand about fibrosis — its pathology and 
potential treatments — has been gathered from in vivo animal 
models of chronic tissue damage. Advanced liver fibrosis is, how-
ever, much less reversible in humans because of the decades, 
instead of weeks, of tissue damage and collagen cross-linking 
(163). Even after accounting for the variable of time, we cannot 
rule out species-specific differences in regeneration that may hin-
der our ability to treat patients. Thus, it may be time for the field to 
develop innovative human models of liver fibrosis.

Historically, in vitro studies of fibrosis have relied on 
“stripped-down” strategies involving short-lived primary cells 
and/or immortalized hepatic lines from healthy and diseased liv-
ers. Although simplistic, this has led to critical discoveries in the 
field, such as the molecular mechanism behind myofibroblast 
transdifferentiation (a process that occurs spontaneously when 
HSCs are cultured on plastic) (164). Human adult-derived hepatic 
progenitors can now be expanded in vitro as highly proliferative, 
yet genomically stable, 3D organoid structures that incorporate 
epithelial heterogeneity from the bile duct and hepatocyte lin-
eages (26), proving of great biomedical potential for hepatic dis-
ease modeling (165). Still, the lack of stromal cells in these organ-
oids restricts their ability to model complex diseases like fibrosis, 

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/1


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  F I B R O S I S

9 2 jci.org   Volume 128   Number 1   January 2018

 1. Gurtner G, Werner S, Barrandon Y, Longaker 
M. Wound repair and regeneration. Nature. 
2008;453(7193):314–321.

 2. Sánchez Alvarado A. Regeneration in the 
metazoans: why does it happen? Bioessays. 
2000;22(6):578–590.

 3. Timchenko NA. Aging and liver regeneration. 
Trends Endocrinol Metab. 2009;20(4):171–176.

 4. Michalopoulos GK. Liver regeneration. J Cell 
Physiol. 2007;213(2):286–300.

 5. Taub R. Liver regeneration: from myth to mecha-
nism. Nat Rev Mol Cell Biol. 2004;5(10):836–847.

 6. Bataller R, Brenner D. Liver fibrosis. J Clin Invest. 
2005;115(2):209–218.

 7. Wang B, Zhao L, Fish M, Logan CY, Nusse 
R. Self-renewing diploid Axin2(+) cells fuel 
homeostatic renewal of the liver. Nature. 
2015;524(7564):180–185.

 8. Tarlow BD, Finegold MJ, Grompe M. Clonal trac-
ing of Sox9+ liver progenitors in mouse oval cell 
injury. Hepatology. 2014;60(1):278–289.

 9. MacDonald RA. “Lifespan” of liver cells. Auto-
radio-graphic study using tritiated thymidine in 
normal, cirrhotic, and partially hepatectomized 
rats. Arch Intern Med. 1961;107:335–343.

 10. Michalopoulos GK, DeFrances MC. Liver regen-
eration. Science. 1997;276(5309):60–66.

 11. Lim YS, Kim WR. The global impact of hepatic 
fibrosis and end-stage liver disease. Clin Liver 
Dis. 2008;12(4):733–746.

 12. Asrani SK, Larson JJ, Yawn B, Therneau TM, 
Kim WR. Underestimation of liver-related 
mortality in the United States. Gastroenterology. 

2013;145(2):375–82.e1.
 13. Fancy SP, Chan JR, Baranzini SE, Franklin RJ, 

Rowitch DH. Myelin regeneration: a reca-
pitulation of development? Annu Rev Neurosci. 
2011;34:21–43.

 14. Miyajima A, Tanaka M, Itoh T. Stem/progenitor 
cells in liver development, homeostasis, regen-
eration, and reprogramming. Cell Stem Cell. 
2014;14(5):561–574.

 15. Rock JR, Hogan BL. Epithelial progenitor cells 
in lung development, maintenance, repair, and 
disease. Annu Rev Cell Dev Biol. 2011;27:493–512.

 16. Shi X, Garry DJ. Muscle stem cells in develop-
ment, regeneration, and disease. Genes Dev. 
2006;20(13):1692–1708.

 17. Clevers H, Loh KM, Nusse R. Stem cell signal-
ing. An integral program for tissue renewal and 
regeneration: Wnt signaling and stem cell con-
trol. Science. 2014;346(6205):1248012.

 18. Grisham JW, Porta EA. Origin and fate of pro-
liferated hepatic ductal cells in the rat: electron 
microscopic and autoradiographic studies. Exp 
Mol Pathol. 1964;3:242–261.

 19. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, 
Thorgeirsson SS. In vivo differentiation of rat 
liver oval cells into hepatocytes. Cancer Res. 
1989;49(6):1541–1547.

 20. Sell S. Is there a liver stem cell? Cancer Res. 
1990;50(13):3811–3815.

 21. Furuyama K, et al. Continuous cell supply from 
a Sox9-expressing progenitor zone in adult liver, 
exocrine pancreas and intestine. Nat Genet. 
2011;43(1):34–41.

 22. Español-Suñer R, et al. Liver progenitor cells 
yield functional hepatocytes in response to 
chronic liver injury in mice. Gastroenterology. 
2012;143(6):1564–1575.e7.

 23. Huch M, et al. In vitro expansion of single Lgr5+ 
liver stem cells induced by Wnt-driven regenera-
tion. Nature. 2013;494(7436):247–250.

 24. Dorrell C, et al. Prospective isolation of a bipo-
tential clonogenic liver progenitor cell in adult 
mice. Genes Dev. 2011;25(11):1193–1203.

 25. Shin S, et al. Foxl1-Cre-marked adult hepatic pro-
genitors have clonogenic and bilineage differenti-
ation potential. Genes Dev. 2011;25(11):1185–1192.

 26. Huch M, et al. Long-term culture of genome-
stable bipotent stem cells from adult human liver. 
Cell. 2015;160(1-2):299–312.

 27. Lu WY, et al. Hepatic progenitor cells of biliary 
origin with liver repopulation capacity. Nat Cell 
Biol. 2015;17(8):971–983.

 28. Schaub JR, Malato Y, Gormond C, Willenbring H. 
Evidence against a stem cell origin of new hepa-
tocytes in a common mouse model of chronic 
liver injury. Cell Rep. 2014;8(4):933–939.

 29. Yanger K, et al. Adult hepatocytes are generated 
by self-duplication rather than stem cell differen-
tiation. Cell Stem Cell. 2014;15(3):340–349.

 30. Font-Burgada J, et al. Hybrid periportal hepato-
cytes regenerate the injured liver without giving 
rise to cancer. Cell. 2015;162(4):766–779.

 31. Roskams T, Desmet V. Ductular reaction and 
its diagnostic significance. Semin Diagn Pathol. 
1998;15(4):259–269.

 32. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. 

sion. The studies reviewed here have highlighted the time-depen-
dent duality (pro-regenerative versus profibrotic) of the cells and 
molecules that drive wound healing. Be it by deactivation or clear-
ance, regenerative pathways must be terminated; otherwise they 
become appropriated for fibrosis. In chronically damaged livers, 
the vicious cycle of cell death, inflammation, and excessive ECM 
deposition overrides epithelial restoration. Yet even cirrhotic liv-
ers may partially regress to homeostasis if antifibrotic inputs out-
balance profibrotic ones, proving once again the malleability of 
the liver tissue. Focus should, then, be placed on developing multi-
targeted therapies that cripple the self-maintenance of fibrosis. 
Lastly, the field would benefit from complementary organotypic 
cultures and in silico models to shed light on the dynamics that 
govern regeneration and fibrosis in humans.
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whose pathogenesis involves matrix-depositing, inflammatory, 
and endothelial cells. Takebe and colleagues have pioneered the 
idea of a truly organotypic human liver culture, albeit embryonic, 
by coculturing hepatic progenitors derived from human induced 
pluripotent stem cells with mesenchyme and endothelium (using 
human mesenchymal cells and HUVECs) in order to recapitulate 
key cell-cell interactions that lead to liver-bud formation in the 
embryo (166). Adult hepatic cultures will likely be challenged by 
the higher diversification of stromal cells in the tissue — HSCs, por-
tal fibroblasts, LSECs, Kupffer cells, and recruited inflammatory 
cells — as well as the time-dependent changes that occur following 
acute versus chronic damage. Multiscale mathematical models, as 
have been constructed with mouse liver data (167), may be further 
required to integrate and predict the evolution of cell-cell interac-
tions in space and time. In vitro and in silico approaches like these 
will never recapitulate the entirety of the fibrotic response at the 
whole-organism level, but may provide crucial mechanistic infor-
mation about the complex cellular and molecular crosstalk that 
underlies human pathology, especially at the early stages of the 
fibrotic response.

In conclusion, injury of the hepatic tissue activates a spa-
tiotemporally controlled reaction involving inflammatory cell 
recruitment, matrix deposition, and epithelial cell replacement. 
Although the liver’s plasticity accommodates for a multitude of 
damaging insults, tissue degeneration and scarring often develop 
over time. Understanding the mechanisms that balance tissue 
regeneration and fibrosis is thus essential to identify new avenues 
of therapeutic intervention as well as to predict disease progres-
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