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Introduction
Tissue fibrosis is a pathologic hallmark of many chronic dis-
eases (1). Progressive architectural remodeling characterized 
by extensive production of collagen and extracellular matrix 
commonly accompanies organ dysfunction and failure. Acute 
or insidious injury almost invariably precedes the development 
of tissue fibrosis (2). Diverse antecedent events, including tis-
sue ischemia, infection/inflammation, and toxic exposures, can 
lead to fibrotic remodeling, suggesting that convergent molecu-
lar mechanisms culminate in the pathology of tissue fibrosis (1). 
There is great interest in defining these molecular mechanisms 
and identifying novel therapeutic targets for a wide range of 
chronic fibrotic diseases (3).

Abnormalities in protein folding and quality control are cardi-
nal features of aging (4) and have been detected in many chronic 
degenerative and fibrotic disorders. Initial indications that the 
protein quality control system may play a direct role in tissue  
fibrosis emerged from studies of Mendelian forms of fibrotic dis-
ease, including familial interstitial pneumonia (the familial form of 
idiopathic pulmonary fibrosis [IPF]) (5), familial forms of chronic 
kidney disease (6), and α1-antitrypsin–related (α1AT-related) cir-
rhosis (7). In each case, germline mutations were identified that 
result in defects in folding and/or processing of a nascent peptide, 
leading to induction of endoplasmic reticulum (ER) stress and 
activation of a signaling network known as the unfolded protein 
response (UPR). As described in more detail below, subsequent 
work has demonstrated UPR activation in progressive fibrotic dis-
eases involving different organs.

The ER quality control system
The ER contains an elegant system designed to facilitate the  
proper folding and trafficking of proteins, particularly those des-
tined for secretory pathways. Within the ER, a variety of chap-
erone proteins are involved in protein folding and trafficking. In 
physiologic states of rapid cellular proliferation (for example, 
malignancy) or in highly secretory cells (plasma cells, pancreatic β 
cells, and alveolar type II epithelial cells), the activation of a well-
coordinated series of transcriptional and translational changes 
promotes homeostasis. UPR signaling is mediated through three 
effector pathways that involve activation of PKR-like ER kinase 
(PERK), activating transcription factor 6 (ATF6), and inositol-
requiring enzyme 1α (IRE1α). Activation of UPR signaling can 
modulate new protein synthesis, increase production of ER chap-
erones to improve protein folding, and induce components of the 
ER-associated degradation (ERAD) system.

The immunoglobulin heavy chain chaperone protein Bip (also 
known as glucose-related peptide 78, GRP78) is a heat-shock protein 
family member that is central to UPR regulation. Under normal con-
ditions in the ER, Bip is constitutively bound to the three ER sensors 
(PERK, ATF6, and IRE1α) and suppresses their signaling (2). Bip also 
binds to misfolded proteins in the ER, and thus, as misfolded pro teins 
accumulate, Bip binding to the three UPR sensors is reduced (3, 4).

PERK undergoes dimerization and autophosphorylation upon 
dissociation from Bip, which in turn leads to phosphorylation of 
eukaryotic translation initiation factor 2α (EIF2α) at Ser51, result-
ing in a global reduction in mRNA translation (8). However, eIF2α 
phosphorylation can also increase translation of selected mRNAs, 
including activating transcription factor 4 (ATF4) (9). ATF4 then 
acts to increase expression of ATF3, which in turn promotes 
expression of genes related to antioxidant responses, amino acid 
synthesis, and autophagy (13).
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gent mRNA endonuclease activity and acts to promote general-
ized degradation of mRNAs, as well as microRNAs (miRNAs), 
through a process known as IRE1-dependent decay (RIDD) (17).

These three arms of UPR signaling work in concert to main-
tain cellular homeostasis in the setting of ER stress (Figure 1). 
However, under severe or prolonged ER stress, this process may 
become maladaptive and promote cellular dysfunction and death.

Profibrotic cellular phenotypes associated  
with ER stress
Although the mechanisms connecting ER stress with fibrosis have 
been challenging to unravel, most studies to date have focused on 
proapoptotic (18) or proinflammatory effects of ER stress. In addi-
tion, direct profibrotic effects related to mediator production and 
acquisition of mesenchymal characteristics (epithelial-mesenchymal  

Following its release from Bip, ATF6 is trafficked to the Golgi 
apparatus, where it undergoes a cleavage event that releases the 
cytosolic domain. This activated form of ATF6 enters the nucleus 
and acts to enhance transcription of target genes, including the 
ER chaperones Bip, GRP94, calreticulin, and components of the 
ERAD system (14–16).

Activated IRE1α possesses endoribonuclease activity,  
which leads to selective removal of 26 base pairs from the mRNA 
encoding transcription factor X-box protein-1 (XBP1), produc-
ing a transcriptionally active form (XBP1s). XBP1s then migrates 
to the nucleus, where it promotes transcription of components 
of the ERAD system, including ER degradation–enhancing 
α-mannosidase–like protein (EDEM). Activated IRE1α can either 
homodimerize or oligomerize and autophosphorylate. Oligo-
merized polyphosphorylated IRE1α appears to have less strin-

Figure 1. Overview of ER stress–related signal-
ing. Bip binds to accumulating misfolded pro-
teins in the ER, leading to its dissociation from 
the three ER stress sensors, IRE1α, PERK, and 
ATF6. (i) Dissociation from Bip allows IRE1α to 
multimerize and autophosphorylate, activating 
endoribonuclease activity that leads to alterna-
tive splicing of the transcription factor XBP1. 
Spliced XBP1 (XBP1s) then translocates to the 
nucleus and promotes transcription of compo-
nents of the ERAD system. Oligomerized IRE1α 
loses stringency of endoribonuclease activity 
and activates regulated IRE1-dependent decay 
(RIDD), thereby degrading mRNA and miRNAs. 
(ii) Bip dissociation leads to dimerization and 
autophosphorylation of PERK, which phos-
phorylates eIF2α to inhibit protein translation 
and signals for ATF4 nuclear translocation. 
Once in the nucleus, ATF4 activates ATF3, 
which induces adaptive antioxidant responses, 
promotes amino acid synthesis, and promotes 
autophagy. (iii) Bip dissociation from ATF6 
permits its transit from the ER to the Golgi, 
where further processing allows trafficking 
to the nucleus and subsequent increases in 
production of ER chaperones. (iv) Bip and 
other ER chaperones serve as calcium-binding 
proteins. The ER tightly controls the cytosolic 
calcium pool available for mitochondrial uptake 
through the mitochondrial calcium uniporter 
(MCU) via sarcoendoplasmic reticulum Ca2+ 
ATPase (SERCA) and the inositol triphosphate 
receptor (IP3R). Through its regulation of 
calcium flux, the ER plays a central role in the 
regulation of cellular bioenergetics and mito-
chondrial mechanisms of apoptosis.
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its murine homolog, caspase-12) is an ER membrane–resident cas-
pase that becomes activated in the setting of ER stress (30) and 
induces apoptosis through activation of caspase-9 (14). The precise 
mechanism of ER stress–induced caspase-4 activation remains 
uncertain, but it may be mediated through calcium signaling (32).

Inflammatory signaling. Persistent inflammation can result in 
tissue injury and aberrant repair that facilitates fibrotic remod-
eling of affected tissues. The UPR has been shown to activate 
proinflammatory transcription factors such as NF-κB and AP-1 
(33) through IRE1α-mediated induction of TRAF2 signaling (17). 
TRAF2 can activate NF-κB in a NOD1/2- and RIP1-dependent 
cascade (18) and can activate AP-1 through JNK phosphorylation 
(17). PERK activation can also result in increased NF-κB activity 
through translational suppression of IκBα (36). However, activa-
tion of inflammatory signaling appears to be context and cell type 
dependent, as NF-κB activation is not observed in all models of 
ER stress (20, 21). Suppression of TNF-α and LPS-induced NF-κB 
activation (22), as well as inhibition of NF-κB–driven cytokine pro-
duction, has even been reported in some systems (23).

In addition to transcriptional effects on inflammatory path-
ways, ER stress can alter the phenotype of immune/inflamma-
tory cells, particularly macrophages. NF-κB activation supports 
production of a variety of mediators associated with classically 
activated (M1) macrophages (41). In addition, ER stress has also 
been linked to activation of NLRP3 inflammasomes (42), which 
process the M1-associated cytokines IL-1β and IL-18 for secretion. 
A recent study showed that genetic deletion of IRE1α in macro-
phages limited M1 polarization and increased the alternatively 
activated (M2) macrophage phenotype (43). Similarly, CHOP 
deficiency was shown to prevent M1 macrophage polarization in a 
model of high-fat diet–induced obesity (44). In contrast, however, 
genetic deletion of CHOP reportedly decreased M2 macrophage 
polarization in a model of pulmonary fibrosis (45), and ex vivo M2 
polarization of mouse peritoneal macrophages has been shown to 
depend on ER stress–induced JNK activation (46).

transition) (19, 20) may also contribute to fibrotic remodeling in a 
context-specific manner.

Apoptosis. Apoptosis of epithelial cells in the lungs and other 
organs is linked to fibrotic remodeling, presumably by inhibiting 
re-epithelialization after injury or by impairing barrier functions 
of the epithelium. The ER is intricately associated with mito-
chondria through a large number of mitochondria-associated 
membranes (reviewed in ref. 21) and plays a critical role in regu-
lating cellular bioenergetics and cell-death signaling through its 
sequestration of intracellular calcium. Uptake of calcium by the 
mitochondria through the low-affinity mitochondrial calcium 
uniporter complex (MCU) is crucial for maintaining the mito-
chondrial membrane potential (22, 23); the availability of cyto-
solic calcium for uptake through the MCU is highly regulated 
by the ER membrane–resident sarco/endoplasmic reticulum 
Ca2+/ATPase (SERCA) pump, ryanodine receptors, and inositol 
1,4,5-triphosphate receptors (IP3Rs) (21). Numerous ER-resident  
chaperones, including Bip and calreticulin, function as calcium- 
binding proteins (21), and impairment of SERCA function 
increases calcium leakage, promotes ER stress, and enhances 
apoptotic susceptibility (24, 25). Impairment of IP3R-dependent 
calcium transfer also leads to reduced mitochondrial ATP pro-
duction and promotes autophagy (26).

In addition to direct ER-mitochondrial interactions, ER stress 
can initiate proapoptotic signaling through each of the three arms 
of the UPR cascade. ATF4 induction downstream of PERK can  
activate C/EBP homologous protein (CHOP), a well-studied 
inducer of apoptosis (reviewed in ref. 27). IRE1α and ATF6 path-
ways can also contribute to CHOP induction in some settings (28). 
CHOP is a bifunctional transcription factor that can promote cell 
death by influencing expression of pro- and antiapoptotic fac-
tors, including BCL-2 and BH3-only family members (29). IRE1α 
phosphorylation also leads to activation of c-Jun NH2-terminal 
kinase (JNK), which can promote apoptosis as well as increase 
RIDD, which can have proapoptotic effects. Also, caspase-4 (and 

Figure 2. Mechanisms of fibrosis related to ER stress. In epithelial cells, ER stress induces a profibrotic microenvironment by promoting apoptosis, sup-
pressing progenitor cell function, activating inflammatory signaling pathways, and inducing production of profibrotic mediators that promote fibroblast 
proliferation and myofibroblast differentiation. ER stress signaling in T lymphocytes suppresses Th1 and Th2 polarization and drives Th17 polarization, 
which can promote fibrosis through interactions with epithelium and fibroblasts. In macrophages, ER stress facilitates acquisition of the M2 phenotype, 
which is accompanied by enhanced production of profibrotic mediators.
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modeling in target organs. Hepatitis C virus (HCV) infection is 
associated with ER stress in hepatocytes (66, 67). Before the 
dev elopment of effective antiviral therapies, HCV infection  
frequently progressed to cirrhosis and end-stage liver disease. 
In the lung, chronic infection of alveolar epithelial cells with 
human herpesviruses has been associated with ER stress and 
development of IPF (60).

Despite the examples given above, the proximate cause of ER 
stress in fibrotic diseases is often not apparent; however, numer-
ous metabolic and bioenergetic stressors are known to cause ER 
stress and activate the UPR in vitro. Cellular aging has also been 
associated with reduced ER capacity and increased susceptibility 
to ER stress, likely mediated at least in part through mitochondrial 
dysfunction (68, 69). In addition, oxidative stress (70), altered 
calcium homeostasis (71), and cellular hypoxia (72–75) can impair 
protein folding and processing, culminating in ER stress.

ER stress in chronic fibrotic disorders
Pulmonary fibrosis. IPF is a progressive form of tissue fibrosis that 
typically leads to respiratory failure within 3–5 years of diagnosis 
(76). Familial clustering of IPF, known as familial interstitial pneu-
monia (FIP), has been observed since the 1950s (77). In 2002, 
the first genetic cause of FIP was identified in a large family that 
included IPF patients and individuals with childhood onset of 
interstitial lung disease (78). Affected individuals shared a rare 
missense variant (L188Q) in the gene encoding surfactant protein 
C (SP-C), which is expressed exclusively in type II alveolar epithe-
lial cells. This variant is adjacent to a cysteine residue in pro–SP-C 
that is required for proper folding (79). After studies showed that 
misfolded pro–SP-C aggregates in the ER and activates the UPR 
(60, 80), additional studies from several groups demonstrated 
that other disease-associated mutations in the C-terminal por-
tion (or BRICHOS domain) of pro–SP-C result in expression of a 
misfolded protein (20, 38, 58, 59, 80). In addition to heterozygous 
SFTPC mutations, heterozygous mutations in another surfactant 
protein gene, SFTPA2, have been linked to aberrant protein pro-
cessing, ER stress, and pulmonary fibrosis in families (61).

The identification of ER stress in alveolar epithelial cells 
expressing mutant surfactant proteins prompted studies in spo-
radic IPF patients, which identified ER stress as a common feature 
in IPF lungs (60). Increased expression of a number of ER stress 
markers, including Bip, XBP1, ATF4, ATF6, and CHOP, has been 
reported in IPF patient samples, primarily localized to hyperplas-
tic type II alveolar epithelial cells in areas of fibrotic remodeling 
(60, 68, 81, 82). In addition, some asymptomatic first-degree rela-
tives of FIP patients have evidence of ER stress in alveolar epithe-
lial cells (83), suggesting that ER stress could be an early driver 
of disease pathogenesis. While these studies provide compelling 
evidence of ER stress in the IPF lung, the etiology of ER stress is 
uncertain. In vitro and preclinical animal models indicate that 
cigarette smoke (84–86), asbestos (87), and environmental par-
ticulates (88) can induce ER stress in alveolar epithelial cells. In 
addition, the colocalization of ER stress markers with herpesvirus 
antigens in the alveolar epithelium of IPF patients (60) suggests 
that viral protein expression could be a factor.

Animal models have helped to clarify a role for ER stress in 
development of pulmonary fibrosis. Constitutive expression of 

In addition to innate immunity, UPR signaling plays a role in 
the adaptive immune system. Plasma cell and dendritic cell matu-
ration and differentiation requires ER stress–induced activation of 
IRE1α (47, 48). ER stress may also play a role in regulating T cell 
responses, in particular, polarization of Th17 cells (49), which have 
been implicated in lung and skin fibrosis (50, 51). Induction of ER 
stress by hypoxia or nutrient deprivation promotes Th17 cell dif-
ferentiation independent of TGF-β, which is mediated at least in 
part through XBP1 (49).

Thus, available evidence indicates that ER stress modulates 
inflammatory signaling and immune/inflammatory cell pheno-
types in complex ways that depend on the cell type and stimulus.

Epithelial-mesenchymal signaling and differentiation. In epithe-
lial cells, induction of ER stress has been shown to cause a phe-
notypic shift characterized by adoption of mesenchymal cell–like 
morphology and reduced expression of epithelial markers. This 
phenotype shift includes induction of vimentin, N-cadherin, and 
α-smooth muscle actin (αSMA), markers typically associated with 
mesenchymal cells (33, 34). Acquisition of mesenchymal charac-
teristics may allow these cells to more directly contribute to wound 
repair and tissue remodeling. In addition, recent work indicates 
that ER stress can suppress Wnt-driven epithelial stem/progenitor 
cell function downstream of β-catenin nuclear localization (52), 
suggesting that ER stress may inhibit the self-renewal capacity of 
local progenitor cell niches.

UPR activation has been shown to alter the function and acti-
vation of fibroblasts (53), the cell type primarily responsible for 
collagen and matrix deposition. UPR activation promotes TGF-β–
mediated myofibroblast differentiation (54, 55) at least in part 
through IRE1α-mediated regulation of miRNAs (56). For example, 
activated IRE1α can degrade miR-150, which negatively regulates 
αSMA expression (57).

Together, available data indicate that ER stress promotes 
fibrosis by enhancing apoptosis of epithelial cells, promoting pro-
fibrotic cytokine production from epithelial and immune cells, 
and enhancing activation of myofibroblasts (Figure 2).

Mechanisms of ER stress induction in  
fibrotic diseases
The case for a mechanistic relationship between ER stress and 
fibrosis is bolstered by the identification of rare disease-causing 
mutations that result in expression of misfolded proteins. In 
the lung, mutations in the genes encoding surfactant protein C  
(SFTPC) (58–60) and surfactant protein A2 (SFTPA2) (61), which 
result in ER stress in type II alveolar epithelial cells, have been 
identified in families with IPF. In the kidney, nephrin (62), lam-
inin β2 (63), and podocin (64) mutations that result in ER stress 
in podocytes have been identified in families with chronic kidney 
disease. In the liver, Z-allele α1AT produces a misfolded protein 
product in hepatocytes that accumulates in the ER and is associ-
ated with development of cirrhosis in some individuals homo-
zygous for the mutant allele (65). Each of these disease-causing 
genetic variants shares the common feature of producing highly 
expressed protein products that are misfolded and mistrafficked, 
resulting in ER stress in epithelial cells of the target organ.

In addition to expression of defective proteins, expression 
of exogenous viral proteins can cause ER stress and fibrotic re -
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podocin (64), can induce ER stress and UPR activation, which 
have been shown to contribute to podocyte injury/apoptosis, 
proteinuria, and CKD. In addition, albumin has been shown to 
induce ER stress in tubular epithelial cells by altering intracellular  
calcium levels, resulting in apoptosis via UPR-dependent upregu-
lation of lipocalin 2 (100). Together, these studies implicate ER 
stress as a factor in both induction of proteinuria and mediation 
of its toxic effects. In another form of familial CKD, autosomal 
dominant tubulointerstitial kidney disease, genetic mutations in 
uromodulin (98, 101, 102) have been reported to induce ER stress 
in epithelial cells in the thick ascending limb of the loop of Henle 
and cause progressive tubulointerstitial fibrosis. A recently pub-
lished transgenic mouse model with knock-in of a human mis-
sense uromodulin mutation showed that ER stress–regulated fac-
tors, including tribbles-3, can determine pathology by sensitizing 
cells to TNF-α– and TRAIL-induced apoptosis (103).

In addition to genetic causes of ER stress, environmental 
insults such as hypoxia, increased glucose, and drugs (e.g., cyclo-
sporine) can induce ER stress in the kidney (6, 96). ER stress is 
well documented in diabetic kidneys (104–106); however, it is 
not entirely clear whether it is protective or pathogenic. While  
diabetic CHOP-deficient mice develop less proteinuria com-
pared with controls (107), podocyte-specific XBP1 deficiency or  
overexpression of ATF6 worsens diabetic nephropathy (108).

Recent studies have identified a new mechanistic connection 
between ER stress and kidney disease through the ER-associated 
protein reticulon 1 (RTN1) (104, 109–112), which is associated 
with acute kidney injury and progression to CKD in animal mod-
els and in humans. Increased expression of RTN1 (particularly the 
RTN1A isoform) induces apoptosis of renal epithelial cells through 
ER stress–induced activation of PERK and downstream induction 
of CHOP (104). Knockdown or inhibition of RTN1A expression 
attenuated ER stress, apoptosis, and renal injury fibrosis in mod-
els of unilateral ureteral obstruction (104), diabetic nephropathy 
(111), and albumin-overload kidney disease (112). It remains to be 
seen whether this mechanism of ER stress–dependent injury and 
remodeling is relevant in other organs.

Another mechanism by which ER stress signaling affects diabetic 
nephropathy is regulation of long noncoding RNA (lncRNA) (105). 
In a murine model, a cluster of several dozen miRNAs encoded by a 
host lncRNA was found to be upregulated in the setting of ER stress, 
both in glomeruli of diabetic mice and in cultured mesangial cells 
(105). This miRNA cluster is predicted to regulate a variety of signal-
ing processes relevant to fibrosis, including the TGF-β pathway (105). 
Although more work is needed, it is likely that future studies will iden-
tify a larger role for lncRNAs in regulating ER stress–related signaling.

Hepatic fibrosis. ER stress has been observed in several forms 
of chronic liver disease, including cirrhosis associated with HCV 
infection (113) or mutant forms of α1AT (65), nonalcoholic steato-
hepatitis (NASH) (114), and primary biliary cirrhosis (115). Toxic 
aggregation of misfolded Z-allele α1AT protein is believed to drive 
α1AT-related liver disease through pathways involving ER stress, 
autophagy, and other cellular quality control systems (116–118). In 
NASH, lipids accumulate in hepatocytes when the influx of fatty 
acids exceeds the clearance capacity (114). Subsequently, lipid over-
load results in chronic ER stress that, in turn, increases lipogenesis, 
drives inflammation, and causes hepatocyte apoptosis (114, 119).

a mutant form of SFTPC or overexpression of the mature SP-C  
peptide disrupts lung development and results in perinatal mortal-
ity with disrupted lung development, accumulation of protein in 
the ER, and evidence of ER stress (58, 89). We used an inducible 
transgenic model to overexpress the L188Q mutant form of human 
SFTPC in alveolar epithelial cells using the murine SP-C promoter 
(20). Following doxycycline treatment, the transgene localized 
to the ER and activated the UPR, but no evidence of lung fibrosis 
was found even with long-term transgene expression. However, 
following treatment with low-dose bleomycin, lung fibrosis and 
alveolar epithelial cell apoptosis were markedly exacerbated in 
animals expressing mutant SFTPC. Similarly, intratracheal treat-
ment with the ER stress–inducing agent tunicamycin failed to 
spontaneously cause fibrosis, but worsened bleomycin-induced 
lung fibrosis. Together, these studies indicate that induction of 
ER stress in lung is not sufficient to cause lung fibrosis; rather, ER 
stress exacerbates the response to fibrogenic stimuli.

Although epithelial cell apoptosis is implicated as an impor-
tant factor in determining the development and progression of 
lung fibrosis, the relevant UPR pathway(s) and effector mol-
ecules that determine epithelial cell death and survival in the 
presence of fibrotic stimuli remain uncertain. For example, the 
role of CHOP has been investigated with conflicting results. 
In two reports, CHOP-deficient mice exhibited comparative 
reductions in hydroxyproline content and histologic fibrosis 
after bleomycin treatment (45, 90). In contrast, another group 
reported markedly worse survival and increased fibrosis in 
CHOP-deficient mice following bleomycin treatment (91). The 
latter study also showed that mice with heterozygous loss of 
Bip (which would be expected to exacerbate ER stress) were 
protected from lung fibrosis via increased CHOP-dependent  
macrophage apoptosis.

IPF is a disease that occurs with aging (median onset at age 
65), and altered proteostasis is a hallmark of aging. One study 
using murine herpesvirus 68 infection found that ER stress in 
the lung was substantially greater in old mice after infection, 
and this correlated with development of lung fibrosis (69). 
While the reason for increased susceptibility to ER stress in 
aging is not well understood, an important clue may be the 
finding that expression of the mitochondrial protective factor 
PINK1 is reduced in aging and IPF lungs (68). ER stress was 
shown to downregulate PINK1 in mitochondria, thus altering 
bioenergetics in affected epithelium and promoting apoptosis. 
In turn, loss of PINK1 can induce ER stress (92), potentially 
leading to a feedback loop with persistent ER stress that facili-
tates fibrotic remodeling.

Available data indicate that ER stress contributes to a vulner-
able epithelial state in IPF, resulting in increased susceptibility to 
apoptotic stimuli and impaired epithelial regeneration following 
injury. However, the impact of ER stress on disease pathogenesis 
remains incompletely understood, and more information is needed 
regarding the causes and consequences of ER stress in IPF.

Chronic kidney disease. ER stress related to both genetic and 
environmental factors has been identified in chronic kidney dis-
ease (CKD) (6, 93–98). Aberrant gene products associated with 
mutations in several genes expressed by podocytes, including 
collagen IV (97), α-actinin-4 (99), laminin (63), nephrin (62), and 
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In addition to hepatocytes, hepatic stellate cells (HSCs) are 
also susceptible to ER stress and may be important for hepatic 
remodeling. It was recently reported that UPR signaling mediates 
HSC collagen I secretion through XBP1-dependent induction of 
transport and Golgi organization 1 (TANGO1), thus stimulating 
liver fibrosis (120). In addition, ER stress was shown to enhance 
TGF-β signaling as a result of decreasing levels of miR-18a in 
HSCs (121). Further, several recent reports have indicated that 
upregulation of the growth factor FGF21 may hold promise in 
preventing ER stress–mediated steatosis (122–125). Despite evi-
dence that ER stress in HSCs contributes to collagen deposition, 
studies using chemical chaperones 4-phenylbutyric acid or tau-
roursodeoxycholic acid to reduce ER stress in mice with methio-
nine- and choline-deficient diet–induced hepatic steatosis have 
reported mixed results regarding disease progression (126, 127). 
Underscoring the complexity of this phenotype, it has also been 
suggested that ER stress–dependent apoptosis of HSCs could be 
beneficial in limiting fibrotic remodeling in the liver (119).

A number of studies have suggested that CHOP is an impor-
tant effector molecule through which ER stress impacts liver fibro-
sis. Following bile duct ligation, liver fibrosis and acute liver injury 
are greatly attenuated in CHOP-deficient mice (128). Knockdown 
of CHOP also protects primary hepatocytes from apoptosis fol-
lowing fatty acid–induced ER stress (129, 130). Similarly, hepato-
cytes from CHOP-deficient mice display reduced apoptosis when 
exposed to toxic stimuli such as glycochenodeoxycholic acid (128) 
or intragastric ethanol feeding (131).

ER stress in other chronic fibrotic disorders. Available evidence 
links ER stress to fibrotic conditions in a variety or organs. For 
example, ER stress–regulated chronic inflammation drives fibrotic 
remodeling in inflammatory bowel disease (IBD). In biopsies from 
IBD patients, increased levels of Bip and spliced XBP1 have been 
reported, including in segments of the mucosa relatively devoid of 
inflammation (132). Mice deficient in IRE1β or XBP1 in the intesti-
nal epithelium develop spontaneous gut inflammation and display 
enhanced proapoptotic signaling in Paneth cells (132). In contrast, 
however, inducing ER stress by expression of a mutant mucin 2 
(Muc2) was shown to cause spontaneous colonic inflammation 
and an increase in Th1 cytokines (133).

In heart failure, several experimental models have shown 
induction of Bip, CHOP, and other ER stress markers in cardio-
myocytes, along with attenuated fibrosis after treatment with a 
pharmacologic ER chaperone (134, 135). In the skin, interrupting 
IRE1α signaling can prevent or reverse myofibroblast activation 
in cells from patients with systemic sclerosis (57).

ER stress as a therapeutic target in fibrosis
There is emerging interest in components of the ER stress response 
as therapeutic targets in the fields of cancer biology, neurodegen-
erative diseases, and fibrosis. Targeting these pathways presents 
unique challenges, as current evidence suggests that conventional 
approaches attempting to block or broadly inhibit signaling through 
one or more arms of the ER stress pathway may have significant  
toxicities due to the role of the UPR in cellular homeostasis (33). 
For example, deletion of XBP1 in lymphoid cells leads to failure of 
plasma cell differentiation and profound suppression of antibody 
production (47), which could predispose to infectious complications.

As an alternative, there has long been interest in enhanc-
ing protein chaperone function in the ER. In support of this 
approach, treatment with pharmacologic chaperones such as 
sodium phenylbutyrate has been shown to reduce ER stress 
and reduce or prevent disease in a variety of preclinical disease 
models (136–140). Other creative strategies to “fine-tune” ER 
stress signaling may also hold promise. In one intriguing report, 
a small-molecule allosteric modulator was shown to selectively 
inhibit oligomerized IRE1α but permit signaling through dimer-
ized complexes (141), suggesting that it may be possible to 
specifically target pathologic signaling through this molecule. 
Leveraging alternative cellular quality control mechanisms 
such as autophagy may also alleviate pathologic ER stress in 
certain circumstances (116).

The future: ER stress and the  
microenvironment
Studies to date have provided remarkable insights into the 
molecular events that mediate ER stress within a cell; however, 
the effects of pathologic ER stress in a given microenvironment 
remain incompletely understood. Given the dueling homeo-
static and pathologic functions of the ER stress machinery, tar-
geting the downstream consequences of ER stress may be the 
most practical and promising therapeutic approach. However, 
emerging clues suggesting non–cell-autonomous effects of ER 
stress suggest that a broader context may be required for con-
sidering ER stress–targeted therapies (142). For example, trans-
fer of supernatant from mucopurulent material from cystic 
fibrosis lungs can induce ER stress in normal human bronchial 
epithelial cells (143). Similarly, conditioned medium from pros-
tate cancer cells was shown to induce ER stress in cultured cells 
(144). The mediators of this effect have not yet been fully eluci-
dated, but may involve TLR4 signaling (144). In Caenorhabditis 
elegans, neuron-specific expression of spliced XBP1 induced ER 
stress in adjacent non-neuronal tissue, suggesting that para-
crine communications may play a role in ER stress induction 
(145). Further work is needed to clarify the mechanisms of this 
“transmissible ER stress.” Intriguingly, a recent report indi-
cates that multivesicular body formation and exosome release 
are increased in the setting of ER stress (146), suggesting that 
the cargo of ER stress–derived exosomes could contribute to 
cell-cell interactions in fibrotic tissue. Technological advances 
in single-cell analytics should allow rapid growth in our under-
standing of the role of intracellular communications in disease 
pathology and are likely to uncover downstream mediators that 
are promising therapeutic targets.

Conclusion
It has been more than two decades since the earliest descriptions 
of the cellular consequences of ER stress, and there have been sig-
nificant advances in understanding homeostatic and pathologic 
signaling through this pathway. The best-studied disease mecha-
nism (ER stress–induced apoptosis) may have high relevance to 
chronic neurodegenerative diseases and cancer therapy (28), 
but its contribution to chronic fibrotic disorders is less certain. It 
appears unlikely that enhanced cell death and/or turnover is suf-
ficient to explain the striking pathologic changes observed in lung, 
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kidney, liver, and other forms of tissue fibrosis related to ER stress. 
The challenge for the coming years is to better elucidate how the 
cellular phenotype of ER stress culminates in chronic fibrotic dis-
eases, and how to leverage these complex signaling mechanisms 
to promote adaptive tissue repair and homeostasis.
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