Hepatic β-arrestin 2 is essential for maintaining euglycemia

Lu Zhu,1 Mario Rossi,1 Yinghong Cui,1 Regina J. Lee,1 Wataru Sakamoto,1 Nicole A. Perry,2 Nikhil M. Urs,3 Marc G. Caron,2 Vsevolod V. Gurevich,2 Grzegorz Godlewski,4 George Kunos,4 Minyong Chen,5 Wei Chen,5 and Jürgen Wess1

1Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA. 2Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA. 3Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. 4Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA. 5Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.

Introduction
One key pathophysiologic feature of type 2 diabetes (T2D) is an increase in hepatic glucose production (HGP) (1–3). HGP is modulated by the activity of several GPCRs, including hepatic glucagon receptors (GCGRs), which play a key role in maintaining euglycemia (3–5). The GCGR, which is abundantly expressed in hepatocytes, is coupled to the stimulatory G protein Gs, which triggers pronounced increases in HGP through a pathway that involves cAMP-mediated activation of PKA (5, 6). Importantly, glucagon levels are inappropriately elevated in patients suffering from T2D, suggesting that enhanced GCGR activity may play a central role in the pathophysiology of T2D (3–7).

The activity of almost all GPCRs is modulated by a pair of proteins known as β-arrestins 1 and 2 (also known as arrestin 2 and 3, respectively; ref. 8). β-Arrestins promote GPCR desensitization and internalization (8), but can also act as signaling proteins in their own right (9).

At present, it remains unknown whether hepatic GCGR activity is regulated by β-arrestins in vivo and, if yes, whether this regulation is physiologically relevant. To address this issue, we generated and analyzed mutant mice that lack β-arrestin 2 (Arrb2) or β-arrestin 1 (Arrb1) selectively in hepatocytes under the control of the thyroxine-binding globulin (TBG) promoter (Arrb2fl/fl TBG-Cre and Arrb1fl/fl TBG-Cre mice, referred to hereafter as hep-barr2–KO and hep-barr1–KO mice, respectively).

The authors have declared that no conflict of interest exists.

Conflict of interest: The authors have declared that no conflict of interest exists.

Submitted: January 18, 2017; Accepted: May 11, 2017.

Reference information: J Clin Invest. https://doi.org/10.1172/JCI92913.

A Brief Report published in the Journal of Clinical Investigation. The article discusses the role of hepatic β-arrestin 2 in maintaining glucose homeostasis, with a focus on its impact on hepatic glucose production. The study generated mice lacking hepatic β-arrestin 2 to investigate its effects on glucose metabolism. The authors found that the absence of β-arrestin 2 resulted in a decrease in hepatic glucose production, providing insights into the regulation of this physiological process.

Our findings indicate that hepatic β-arrestin 2 is critical for maintaining euglycemia by acting as a potent negative regulator of hepatic GCGR signaling in vivo.

Results and Discussion

Generation of hep-barr2–KO mice. To generate hep-barr2–KO mice, we injected floxed Arrb2 mice (10) via the tail vein with an adeno-associated virus (AAV) coding for Cre recombinase (AAV-TBG-Cre) (11). For control purposes, we injected another set of floxed Arrb2 mice with the AAV-TBG-EGFP virus (11), which codes for EGFP (control mice). Two weeks after virus administration, we monitored Arrb2 and Arrb1 expression levels using RNA prepared from primary hepatocytes (Supplemental Figure 1, A and C; supplemental material available online with this article; https://doi.org/10.1172/JCI92913DS1).

Treatment of floxed Arrb2 mice with the AAV-TBG-Cre virus resulted in a pronounced and selective reduction of Arrb2 mRNA expression in hepatocytes (Supplemental Figure 1A). Moreover, β-arrestin 2 protein expression was no longer detectable in hepatocytes from these mice (Supplemental Figure 1B). Arrb2 deletion in hepatocytes had no significant effect on hepatic Arrb1 expression levels (Supplemental Figure 1C). Thus, we refer to floxed Arrb2 mice treated with the AAV-TBG-Cre virus as hep-barr2–KO mice throughout this study.

Hep-barr2–KO mice appeared healthy and had whole body and liver weights similar to those of their corresponding control mice (Supplemental Table 1). Moreover, livers from hep-barr2–KO mice displayed no obvious morphological deficits (Supplemental Figure 1D).

Hepatic insulin action is not impaired in hep-barr2–KO mice. In a previous study, Luan et al. (12) proposed that β-arrestin 2 is required...
for proper insulin signaling in hepatocytes. In contrast, we found that hep-barr2–KO mice showed normal insulin sensitivity in an i.p. insulin tolerance test (ITT) (Figure 1A) and that insulin-stimulated phosphorylation of AKT and GSK3 remained unaffected by the lack of hepatic β-arrestin 2 (Figure 1, B and C). Finally, hyperinsulinemic euglycemic clamp studies did not reveal any significant changes in steady-state glucose infusion rates (GIR) between hep-barr2–KO and control mice (Figure 1, D and E).

These new findings clearly indicate that the lack of β-arrestin 2 in hepatocytes has no significant effect on insulin sensitivity. One possible reason for the discrepant findings reported by us (this study) versus Luan et al. (12) is that the previous study examined whole body Arrb2–KO mice. Since β-arrestin 2 is expressed in most tissues and cell types (8), hepatic insulin signaling may have been affected indirectly by β-arrestin 2 deficiency in other tissues.

β-Arrestin 2 acts as a potent negative regulator of GCGR signaling.

In vivo studies showed that blood glucose levels were significantly increased in both fed and fasted hep-barr2–KO mice (Supplemental Table 1). Plasma insulin and glucagon levels were not significantly different between hep-barr2–KO and control mice (Supplemental Table 1).

Interestingly, following an acute dose of i.p. glucose, hep-barr2–KO mice showed significantly impaired glucose tolerance (Figure 2A) without significant changes in plasma insulin, glucagon, and glucagon-like peptide 1 (GLP-1) levels (Supplemental Figure 2). To test the hypothesis that hepatic β-arrestin 2 deficiency may lead to enhanced hepatic GCGR signaling, we treated mice with a single i.p. dose of an anti-GCGR mAb (mAb7v44; 10 mg/kg). In control experiments, this Ab completely prevented glucagon-induced (16 μg/kg i.p.) increases in blood glucose levels in WT C57BL/6 mice (Supplemental Figure 3).Remarkably, following treatment of hep-barr2–KO mice with the anti-GCGR Ab, the mutant mice no longer displayed impaired glucose tolerance (Figure 2, A and B). This observation suggests that the impairment in glucose tolerance caused by hepatic β-arrestin 2 deficiency is probably due to enhanced hepatic GCGR signaling. The ability of the anti-GCGR Ab to improve glucose tolerance in glucose-injected control mice (compare Figure 2, A and B) also clearly indicates that GCGR signaling regulates postprandial blood glucose levels.

We obtained very similar results when we treated hep-barr2–KO and control mice with the gluconeogenic substrate pyruvate (pyruvate tolerance test; Figure 2, C and D). Moreover, following an acute dose of i.p. glucagon (16 μg/kg), hep-barr2–KO mice showed greatly enhanced blood glucose excursions (glucagon challenge test; Figure 2E).

Hepatic glycogen and triglyceride levels were significantly reduced in livers from hep-barr2–KO mice (Figure 2, J and K). Since glucagon stimulates hepatic glycogen breakdown and fatty acid oxidation and inhibits insulin-dependent lipogenesis (5, 13), this observation further supports the notion that GCGR signaling is enhanced in β-arrestin 2–deficient hepatocytes.

cAMP assays showed that glucagon-induced increases in cAMP levels were significantly enhanced in hepatocytes lacking β-arrestin 2 (Figure 2F). We obtained similar results when we knocked down the expression of Arrb2 in primary WT mouse hepatocytes by using Arrb2 siRNA (Supplemental Figure 4). In this latter case, we monitored the activity of the cAMP/PKA signaling pathway by using a CRE-luciferase reporter.
The lack of β-arrestin 1 had no significant effect on GCGR expression in primary hepatocytes (receptor number per cell: control, 1.66 ± 0.06 × 10⁴; hep-barr1–KO, 1.86 ± 0.08 × 10⁴), as determined in I¹²⁵-glucagon binding studies. Blood glucose, plasma insulin, and plasma glucagon levels remained unaffected by hepatic β-arrestin 1 deficiency (Supplemental Table 2). Moreover, and in striking contrast with the metabolic deficits displayed by the hep-barr2–KO mice, hep-barr1–KO mice did not show any impairments in glucose homeostasis (Supplemental Figure 6).

GCGR internalization is abolished in hepatocytes lacking β-arrestin 2. To examine whether β-arrestin 2 is required for the internalization of endogenous GCGRs, we used I¹²⁵-glucagon to assess the density of GCGRs present on the surface of primary hepatocytes prepared from hep-barr2–KO or control mice (Figure 2L). Prior to glucagon treatment, cell surface GCGR densities were similar in KO and control hepatocytes (Figure 2L). Glucagon (100 nM) treatment of control hepatocytes led to the internalization of approximately 35% of cell surface GCGRs (Figure 2L). In striking contrast, glucagon failed to induce GCGR internalization in hepatocytes lacking β-arrestin 2 (Supplemental Figure 5, A and B).

We also found that glucagon-induced glucose output was greatly enhanced in β-arrestin 2–deficient hepatocytes (Figure 2G). Consistent with this observation, hepatic β-arrestin 2 deficiency led to significant increases in glucagon-stimulated glucose-6-phosphatase catalytic subunit (G6pase) and phosphoenolpyruvate carboxykinase (Pepck) transcript levels (G6pase and Pepck are the 2 rate-limiting enzymes of gluconeogenesis) (Figure 2, H and I).

I¹²⁵-glucagon radioligand binding studies with primary hepatocytes showed that the lack of β-arrestin 2 had no significant effect on GCGR densities (receptor numbers per cell: control, 2.19 ± 0.12 × 10⁴; hep-barr2–KO, 2.25 ± 0.13 × 10⁴). In summary, these data strongly support the concept that β-arrestin 2 represents a potent suppressor of hepatic GCGR signaling in vivo and in vitro.

hep-barr1–KO mice show normal glucose homeostasis. Like most cell types, mouse hepatocytes express both β-arrestin 2 and 1 (12). By employing the same strategy as described above for the generation of hep-barr2–KO (10), we used floxed Arbb1 mice (J. Kim and R.J. Lefkowitz, unpublished observations) to obtain mutant mice that selectively lacked β-arrestin 1 in hepatocytes (hep-barr1–KO mice) (Supplemental Figure 5, A and B). The lack of β-arrestin 1 had no significant effect on GCGR expression in primary hepatocytes (receptor number per cell: control, 1.66 ± 0.06 × 10⁴; hep-barr1–KO, 1.86 ± 0.08 × 10⁴), as determined in I¹²⁵-glucagon binding studies. Blood glucose, plasma insulin, and plasma glucagon levels remained unaffected by hepatic β-arrestin 1 deficiency (Supplemental Table 2). Moreover, and in striking contrast with the metabolic deficits displayed by the hep-barr2–KO mice, hep-barr1–KO mice did not show any impairments in glucose homeostasis (Supplemental Figure 6).

GCGR internalization is abolished in hepatocytes lacking β-arrestin 2. To examine whether β-arrestin 2 is required for the internalization of endogenous GCGRs, we used I¹²⁵-glucagon to assess the density of GCGRs present on the surface of primary hepatocytes prepared from hep-barr2–KO or control mice (Figure 2L). Prior to glucagon treatment, cell surface GCGR densities were similar in KO and control hepatocytes (Figure 2L). Glucagon (100 nM) treatment of control hepatocytes led to the internalization of approximately 35% of cell surface GCGRs (Figure 2L). In striking contrast, glucagon failed to induce GCGR internaliza-
tion in β-arrestin 2–deficient hepatocytes (Figure 2L). Additional I125-glucagon-binding studies showed that glucagon-induced GCGR internalization remained intact in hepatocytes lacking β-arrestin 1 (Figure 2M), indicating that hepatic GCGR internalization is mediated by β-arrestin 2. Since receptor internalization contributes to GPCR desensitization (8), lack of GCGR internalization in β-arrestin 2–deficient hepatocytes is predicted to play a role in enhanced glucagon signaling.

Interestingly, bioluminescence resonance energy transfer (BRET) studies carried out with cotransfected COS-7 cells clearly demonstrated that activated GCGRs can interact with both β-arrestins (tagged with a Venus reporter; Supplemental Figure 7). Since β-arrestin 1 recruitment did not interfere with GCGR internalization (Figure 2M), it is likely that activated GCGRs induce different conformational changes in β-arrestin 2 versus β-arrestin 1. This phenomenon of conformational flexibility is currently the focus of many laboratories studying β-arrestin function (14).

Lack of β-arrestins has little effect on β-adrenergic receptor signaling in hepatocytes. Treatment of hepatocytes from control and hep-barr2–KO (and hep-barr1–KO) mice with isoproterenol (Iso), a β-adrenergic receptor agonist (1 and 10 μM), caused only small increases in cAMP accumulation (compared with glucagon) and had no significant effect on glucose release (Supplemental Figures 8 and 9). Following Iso (10 μM) treatment, hep-barr2–KO hepatocytes (Supplemental Figure 8A), but not hep-barr1–KO hepatocytes (Supplemental Figure 9A), showed a small but significant increase in intracellular cAMP levels. Iso was unable to stimulate glucose release in control or mutant hepatocytes (Supplemental Figure 8B and Supplemental Figure 9B). It is therefore unlikely that altered β-adrenergic receptor signaling makes a major contribution to the metabolic phenotypes observed in the hep-barr2–KO mice.

PTX treatment does not affect the increase in GCGR-mediated glucose output in hep-barr2–KO hepatocytes. To exclude a role of G-type proteins in the observed metabolic phenotypes, we monitored glucagon-induced (10 nM) changes in cAMP accumulation and glucose release in hep-barr2–KO hepatocytes, either in the absence or presence of pertussis toxin (PTX) (300 ng/ml). In PTX assays, glucagon-stimulated CAMP levels were significantly increased in PTX-treated control cells (Supplemental Figure 10A), suggesting that inactivation of inhibitory Gi-type G proteins enhances GCGR signaling via Gs. This stimulatory effect of PTX was not observed with glucagon-treated hep-barr2–KO hepatocytes (Supplemental Figure 10A), probably due to the fact that cAMP levels were already maximally activated under these experimental conditions. The presence of PTX had no significant effect on glucagon-induced glucose responses in control and hep-barr2–KO hepatocytes (Supplemental Figure 10B), suggesting that it is unlikely that potential signaling of the GCGR via Gi makes an important contribution to the changes in glucose homeostasis displayed by the hep-barr2–KO mice.

Overexpression of β-arrestin 2 in hepatocytes protects mice against obesity-induced metabolic deficits. To generate mice that overexpress β-arrestin 2 selectively in hepatocytes (hep-barr2–OE mice), we injected WT C57BL/6 mice with an AAV coding for an HA-tagged version of β-arrestin 2 under the transcriptional control of the hepatocyte-selective TBG promoter (Supplemental Figure 11, A and B). Overexpression of β-arrestin 2 in hepatocytes had no significant effect on Arrb1 expression levels (Supplemental Figure 11A).

Initially, we subjected hep-barr2–OE mice consuming regular chow (RC) and their control littermates (AAV-TBG-EGFP–injected WT C57BL/6 mice) to a series of in vivo metabolic studies. Hep-barr2–OE mice showed significant decreases in fed blood glucose levels (Supplemental Table 3). Plasma insulin and glucagon levels
were similar in hep-barr2–OE mice and their control littermates (Supplemental Table 3). The hep-barr2–OE mice showed only very minor reductions in blood glucose excursions in glucose and pyruvate tolerance tests (Figure 3, A and B). Importantly, however, the mutant mice were clearly less sensitive to the hyperglycemic effects of glucagon in a glucagon challenge test (Figure 3C). Consistent with this in vivo phenotype, glucagon-stimulated HGP was significantly reduced in primary hepatocytes prepared from hep-barr2–OE mice (Supplemental Figure 1IC), further confirming that Arrb2 represents a potent negative regulator of hepatic GCGR function.

We performed similar metabolic tests with hep-barr2–OE mice and their control littermates maintained on a high-fat diet (HFD) for 6 to 10 weeks (Figure 3, E–H). Under these experimental conditions, the control mice showed significantly greater increases in blood glucose levels in all in vivo metabolic assays (as compared with RC control mice), indicative of glucose intolerance, increased gluconeogenesis, and enhanced glucagon sensitivity (Figure 3, E–G). Strikingly, these metabolic deficits were not observed with hep-barr2–OE mice maintained on the HFD (Figure 3, E–G). HFD hep-barr2–OE mice displayed significantly reduced fed and fasting blood glucose levels (Supplemental Table 3). Plasma insulin and glucagon levels were not significantly affected by hepatic β-arrestin 2 overexpression (Supplemental Table 3). Moreover, hep-barr2–OE and control mice showed similar glucose responses in an ITT (Figure 3, D and H).

Interestingly, hepatic Arrb2 expression levels were significantly lower in HFD control than in RC control mice (Supplemental Figure 12). Consistent with this observation, a recent study (12) reported that hepatic Arrb2 levels are reduced in diabetic el, and β-arrestin 2 is critical for maintaining euglycemia. At the cellular level, β-arrestin 2 acts as a potent negative regulator of hepatic GCGR signaling in vivo and in vitro. Interestingly, hepatic β-arrestin 1, in contrast with β-arrestin 2, does not play a role in regulating hepatic GCGR activity and euglycemia, indicating that the 2 β-arrestins do not have redundant functions in hepatocytes. Our findings suggest that strategies aimed at enhancing the expression or activity of hepatic β-arrestin 2 or the development of small molecule β-arrestin 2 mimetics may become clinically useful for reducing exaggerated hepatic GCGR signaling for the treatment of T2D (3, 6).

Methods

Detailed methods are described in Supplemental Methods. See complete unedited blots in the supplemental material (see also ref. 15).

Statistics. Data are expressed as mean ± SEM for the indicated number of observations. The statistical tests used are indicated in the figure legends. All Student’s t tests used were 2 tailed. A P value of less than 0.05 was considered significant.

Study approval. All animal studies were approved by the NIDDK Institutional Animal Care and Use Committee.

Author contributions

LZ, MR, VVG, GG, GK, and JW designed and conceived the experiments. LZ, MR, WS, YC, RJL, and NAP performed and analyzed experiments. NMU and MGC provided the floxed Arrb2 mice and offered valuable advice. MC and WC generated the floxed Arrb1 mice and provided critical know-how regarding the use of these mice. NAP and VVG carried out and interpreted the BRET experiments. GG and GK, together with LZ, performed and analyzed the clamp studies. LZ and JW wrote the manuscript.

Acknowledgments

This research was funded by the Intramural Research Program of the NIDDK (to LZ, MR, YC, WS, and JW) and the National Institute on Alcohol Abuse and Alcoholism (to GG and GK). Robert J. Lefkowitz and his colleagues at Duke University provided the floxed Arrb1 mice. Tina M. Iverson (Vanderbilt University) cosupervised the BRET experiments. MGC and WC were supported by NIH grants 5R37-MH-073853 and R01-CA172570, respectively. VVG was supported by NIH RO1 GM109955 and EY011500. MC was the recipient of a Clinical Oncology Research Center Development grant (5K12-CA100639–08).

Address correspondence to: Jürgen Wess, Laboratory of Bioorganic Chemistry, Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8A, Room B1A-05, 8 Center Drive, Bethesda, Maryland 20892, USA. Phone: 301.402.3589; Email: jwrigtmried@niddk.nih.gov.

NMU’s present address is: Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA.

