Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain

Anand Kumar Singh, Joanna Zajdel, Elahe Mirrasetkhian, Nader Almoosawi, Isabell Frisch, Anna M. Klawonn, Maarit Jaarola, Michael Fritz, and David Engblom

Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.

Introduction

Pain is an adaptive warning signal under physiological conditions, but it also causes a lot of suffering during various pathological states. Pain is a complex phenomenon with many components. The sensory component provides information about location, intensity, and quality of the painful event (1). In addition, pain is inherently unpleasant and induces a negative affective state (2, 3). Converging evidence indicates that the brain regions mediating the sensory and affective components of pain are, at least partly, distinct (1, 4–6).

Prostaglandins are key regulators of nociceptive processing during inflammation, and prostaglandin synthesis inhibitors in the form of nonsteroidal antiinflammatory drugs are widely used for their analgesic properties. Prostaglandins modulate nociceptive signaling at many levels of the neuraxis (7), but it is unclear how they are involved in the affective dimension of pain.

Results and Discussion

To investigate the affective component of pain in mice, we used conditioned place avoidance induced by inflammatory pain. This test, in which mice learn to avoid a chamber where they experienced pain induced by formalin injection to the hind paw, has been used extensively to investigate the affective component of pain in rodents (3, 5, 6, 8). To explore the role of prostaglandins, we first interfered with the cyclooxygenases COX1 and COX2 (also known as PTGS1 and PTGS2), enzymes responsible for prostaglandin synthesis. Normal (WT) mice, mice lacking COX1, and mice pretreated with a COX1 selective inhibitor (sc560, 5 mg/kg, i.p.; Figure 1B) avoided the chamber paired with formalin injections (Figure 1, A and B; for figures showing the behavioral experiments with individual values indicated, see Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/JCI90678DS1). In contrast, the aversion was completely blocked in genetically modified mice lacking COX2 activity (Figure 1C) and when COX2 was inhibited (parcoxib, 10 mg/kg) during the pain sessions (Figure 1D). To identify the cell type producing the critical prostaglandins, we next used the Cre/loxP system to delete Cox2 in specific cell types. Mice without COX2 in myeloid cells (Cox2<sup>fl/fl</sup> LysM-Cre; Figure 1E) or in brain endothelial cells (Cox2<sup>fl/fl</sup> Slo1c1-Cre; Figure 1F) displayed aversion comparable to that of littermates without Cre (WT mice). In contrast, mice without COX2 in neural cells (Cox-2<sup>fl/fl</sup> Nes-Cre mice), including peripheral and central neurons and glia, showed no avoidance behavior (Figure 1G).

Prostaglandin E<sub>2</sub> is the principal proinflammatory prostanooid and an important regulator of nociceptive and systemic inflammatory responses (7, 9–11). We tested mice lacking mPGES-1, the inducible form of prostaglandin E synthase, in our pain model (mPges-1 KO mice). These mice displayed significantly lower aversion scores compared with their WT littermates (Figure 1H). Prostaglandin E<sub>2</sub> binds to 4 G protein–coupled receptors called EP subtypes, to EP<sub>1</sub> (encoded by Ptgere<sub>1-4</sub>). We tested mice lacking EP<sub>1</sub> or EP<sub>3</sub> receptors, since these are strongly expressed in brain structures related to motivation (12, 13) and have been shown to be implicated in nociceptive processing (14–16). Mice lacking EP<sub>1</sub>Rs (Ptgere<sub>1<sup>−−</sup></sub> mice, referred to as EPIR KO mice) did not show any difference in
aversion scores compared with WT littersmates (Figure 2A). In contrast, Ptger3 knockout (EP3R KO) mice displayed no pain-induced aversion (Figure 2B).

EP3 receptors are expressed in many structures of the brain and the spinal cord. Given the important role of serotonin in the regulation of affective functions, the EP3 receptor expression in serotonergic neurons of the dorsal raphe nucleus and other serotonergic structures (12) is particularly interesting in the context of aversion. To explore the role of EP3 receptors on serotonergic neurons, we next used Ptger3fl/fl Sert-Cre mice (referred to as EP3R-SERTCre mice). In these mice, Ptger3 is deleted by Cre expressed under control of the serotonin transporter (Sert) promoter. As expected, Cre expression was specific to serotonergic neurons, identified by labeling for tryptophan hydroxylase (TpH) (Figure 2, C and D). Further, EP3R-SERTCre mice displayed a clear reduction of Ptger3 mRNA in tissue punches from the dorsal raphe region, whereas no reduction was seen in the cortex or the hypothalamus/thalamus (Supplemental Figure 2A). Subsequently, we tested the EP3R-SERTCre mice in the conditioned pain-avoidance test. We observed a complete abrogation of the aversion in EP3R-SERTCre mice (Figure 2E). Further, aversion was completely blocked in mice lacking the serotonin transporter SERT (Figure 2F). This was done by stereotoxic injection of Cre-expressing viral vectors (AAV5) into mice with floxed Ptger3. Mice with injections that affected the dorsal raphe nucleus (Figure 2G) without extending to the descending raphe nuclei showed blocked aversion (Figure 2H). Collectively, these findings strongly suggest that ascending serotonergic transmission is critical for pain-induced aversion and that prostaglandin E2 can modulate such transmission by a direct effect on EP3 receptors on serotonergic neurons.

Since most EP3R splice variants are coupled to inhibitory G proteins, we investigated whether EP3R activation elicits aversion by inhibition of serotonergic neurons. To test this, we used a designer receptor exclusively activated by designer drug–based (DREADD-based) chemogenetic approach (19) to maintain firing in serotonergic cells during the painful experience and monitored the aversive response of the mice. We injected viral vectors with Cre-dependent expression of Qgu-coupled DREADDs (hM3Dq) or mCherry in SERT-Cre mice (AAV-hM3Dq Sert-Cre and AAV-mCherry Sert-Cre mice, respectively; Figure 2I) and activated the cells by administration of clozapine N-oxide (CNO) before the formalin injections. Strikingly, chemogenetic activation of serotonergic cells blocked the aversion (Figure 2J). Further, mice without EP3Rs on serotonergic cells, which normally display no pain-induced aversion, showed a normal aversion when their serotonergic cells were inhibited during the formalin-pain session (Figure 2, K and L). This was achieved by stereotoxic injections of AAVs encoding Gicoupled DREADDs (hM4Di) or mCherry in EP3R-SERTCre mice (AAV-hM4Di EP3R-SERTCre and AAV-mCherry EP3R-SERTCre mice, respectively; Figure 2K).

Next, we investigated whether the prostaglandin-dependent pathway identified was specific to the affective component of pain or whether it was necessary for all aspects of pain. We monitored acute formalin-induced nociceptive behaviors (lifting, shaking, and licking the injected paw) in mice subjected to pharmacological inhibition of COX2 in mPGES-1 KO mice and in EP3R-SERTCre mice. Pharmacological inhibition of COX2, as well as lack of mPGES-1, markedly reduced the nociceptive behaviors in the second phase of the formalin test (Figure 3, A and
BRIEF REPORT

displayed normal sucrose preference, normal withdrawal latencies in the hot-plate test, and normal real-time avoidance of a hot floor (Supplemental Figure 2, B–D). Thus, prostaglandin-mediated modulation of serotonergic signaling selectively controls aversion to inflammatory pain.

The finding that EP3 receptors on serotonergic neurons regulate the affective component of pain is in line with the central role of serotonin in affective functions (17) and may have relevance for the high comorbidity of pain and depression. Populations of serotonergic cells are modulated by aversive stimuli (22), including pain (23), as well as by rewarding stimuli (24).

Figure 2. EP3 receptors on serotonergic cells are critical for the affective component of pain. (A and B) Aversion scores in mice lacking EP1 receptors (EP1R KO) (A) or EP3 receptors (EP3R KO) (B). (C and D) Confocal micrographs from the dorsal raphe nucleus of a Sert-Cre mouse. Labeling for Tph, a marker for serotonergic neurons, is shown in purple, and Cre labeling is shown in green. D is a higher magnification of parts of C. (E) Graph showing the aversive reaction to inflammatory pain in mice lacking EP1 receptors in serotonergic cells (EP1R-SERTCre) due to deletion driven by the Sert promoter. (F) Aversion scores in control mice and mice lacking the serotonin transporter (Sert KO). (G) Plot of the areas transfected with the viral vector encoding Cre in Ptger3fl/fl animals used in H. (H) Aversion scores in response to formalin-induced pain in mice lacking EP3 receptors in serotonergic cells (EP3R-SERTCre) due to deletion driven by the Sert promoter. (I) Expression of hM3Dq-mCherry in serotonergic cells of the dorsal raphe. (J) Aversion scores from mice in which serotonergic cells were chemogenetically activated (AAV-hM3Dq Sert-Cre + CNO) during the pain session and controls (AAV-mCherry Sert-Cre + CNO). (K) Expression of hM4Di-mCherry in serotonergic cells of the dorsal raphe. (L) Aversion scores from EP3R-SERTCre mice in which serotonergic cells were chemogenetically inactivated (AAV-hM4Di EP3R-SERTCre + CNO) during the pain sessions and controls (AAV-mCherry EP3R-SERTCre + CNO). Scale bars: 50 μm (C, I, and K); 30 μm (D). *P < 0.05; **P < 0.01, Student’s t test.

B), whereas they were unaffected in EP3R-SERTCre mice (Figure 3, C and D). This indicates that prostaglandin E2 modulates many components of pain, but that the effect on serotonergic transmission selectively controls the affective dimension. We also found a normal febrile response in EP3R-SERTCre mice (Figure 3E), indicating that responses driven by EP3Rs in nonserotonergic cells were intact (20, 21). Further, aversion induced by the κ opioid receptor agonist U-50488 (2.5 mg/kg, i.p.) was intact in EP3R-SERTCre mice (Figure 3F), and both Cox2fl/fl Nes-Cre and EP3R-SERTCre mice displayed a robust aversion to thermal pain (Figure 3, G and H). EP3R-SERTCre mice also displayed normal sucrose preference, normal withdrawal latencies in the hot-plate test, and normal real-time avoidance of a hot floor (Supplemental Figure 2, B–D). Thus, prostaglandin-mediated modulation of serotonergic signaling selectively controls aversion to inflammatory pain.

The finding that EP3 receptors on serotonergic neurons regulate the affective component of pain is in line with the central role of serotonin in affective functions (17) and may have relevance for the high comorbidity of pain and depression. Populations of serotonergic cells are modulated by aversive stimuli (22), including pain (23), as well as by rewarding stimuli (24).
Further, serotonergic neurotransmission mediates adaptive danger avoidance (25), can induce fear and anxiety (26), and regulates affective responses to stress (27, 28). The affective responses to stress are mediated by a transient increase in serotonergic neuronal populations. Thus, prostaglandins are involved in the affective component of pain (31). Thus, prostaglandins are involved in the affective component of pain.

Methods

Additional methods are provided in the Supplemental Methods.

Acknowledgments

This study was supported by the European Research Council, the Swedish Medical Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Swedish Cancer Society, and the Swedish Society for Medical Research. Additional support was from the Swedish Foundation for Strategic Research and the Swedish National Foundation for Strategic Research. The manuscript was written by DE, AKS, and JZ. All authors were involved in the design of the parts of the study they executed, discussed the design and results, and commented on the manuscript.

Author contributions

AKS, JZ, and DE were responsible for overall study design. AKS performed the behavioral/physiological experiments except for those involving EP1-KOs (AMK and MF), fever (EM), or thermal pain and sucrose preference (NA, IF, and JZ). MF designed, implemented, and introduced others to the formalin conditioning protocol. Viral injections and histological validations were done by JZ. Quantitative PCR (qPCR) analysis was done by JZ, AKS, MJ, and IF. The manuscript was written by DE, AKS, and JZ. All authors were involved in the design of the parts of the study they executed, discussed the design and results, and commented on the manuscript.
Wallenberg Foundation, the Swedish Brain Foundation, and the County Council of Östergötland. The Sert-Cre line was from the Mutant Mouse Regional Resource Center and was originally donated by the GENSAT BAC transgenic project, funded by the National Institute of Neurological Disorders and Stroke (NINDS). We thank Harvey R. Herschman for providing the Cox2fl/fl line, Markus Schwaninger for providing the Sloc1c1-CreER line, Anders Blomqvist for providing several mouse lines, Johan Jakobsson for input on viral vectors, and Johanna Karlsson for technical assistance.

Address correspondence to: David Engblom, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden. Phone: 46.101038448; E-mail: david.engblom@liu.se.