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Introduction
The liver is a central mediator of feeding and fasting transitions, 
pivoting from carbohydrate-based energy accumulation in the fed 
state to fatty acid oxidation–dependent (FAO-dependent) ener-
gy utilization in the fasted state (1). Nuclear receptors and their 
coregulators are central modulators of these transitions. PPARα 
is a well-known inducer of hepatic FAO in the fasted state (2). 
Although PPARα is thought to be activated by the high levels of 
fatty acids present in the fasted liver (3), the exact nature of the 
endogenous activation signal remains unknown (4).

PPARα activation also promotes gluconeogenesis (2). Hepatic 
farnesoid X receptor (FXR) is activated in the fed state by bile acids 
that return to the liver along with nutrients via the entero hepatic 
circulation. In addition to maintaining bile acid homeostasis, FXR 
exerts direct effects on metabolic pathways, including suppression 
of both gluconeogenesis and lipogenesis (5).

The opposite roles of PPARα and FXR in nutrient responses, 
exemplified by their opposite effects on gluconeogenesis, suggest 
both broad functional interactions and additional counteracting 
metabolic effects. At the most basic functional level, the two nutrient 
sensors regulate each other’s expression. In the fed state, bile acids 
activate expression of human PPARα via direct FXR transactivation, 
although this is apparently not conserved in mice (6). In the opposite 
direction, PPARα activation induces FXR mRNA expression in the 
fasted mouse liver (7). Thus, each nutrient state primes the other by 
increasing the expression of the appropriate nutrient sensor.

For additional metabolic effects we have recently shown 
that these receptors coordinately regulate another fundamen-

tal nutrient response in the liver, autophagy ( 8 ) , as described 
in more detail below. Recent findings suggest the hepatic sec-
retome is another potential target for complementary control 
of liver energy balance. Secretion is a very energy- intensive 
function of the liver, and we recently found that FXR activates 
the secretion of complement and coagulation factors in human 
hepatocytes (9). In contrast, earlier studies indicate that PPARα 
represses a broader range of secreted proteins in the livers of 
both mice (10) and cynomolgus monkeys ( 1 1 ) . Here we discuss 
established overlapping and interdependent functional roles of 
PPARα and FXR in liver energy balance. We also provide pre-
liminary support for predicted new roles for these nutrient sen-
sors in regulation of the liver secretome and as potential thera-
peutic targets for chronic malnutrition. The focus on these two 
receptors should not be taken to exclude important roles for oth-
er nuclear receptors (12, 13), other nutrient-responsive transcrip-
tion factors (14, 15), or their coregulators (16, 17) in central path-
ways of hepatic energy control. In addition, liver expression of 
both PPARα and FXR and many additional key metabolic genes 
is under independent circadian control, but the complex func-
tional interactions of the circadian clock with nutrient response is 
beyond the scope of this Review.

PPARα and FXR as mediators of the fasted 
and fed states in the liver
The best-characterized function of PPARα is to mediate the 
induction of FAO in the fasted state (2). This is clearly evident 
from studies of Nr1c1–/– (Ppara–/–) mice, which show dramatic 
triglyceride accumulation in the fasted state due to loss of the 
potent PPARα stimulation of FAO in both peroxisomes and 
mitochondria (18–20). The idea that PPARα is activated in the 
fasted state by elevated levels of free fatty acids is appealing 
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direction, hypoglycemia is a key phenotype of the fasted Ppa-
ra–/– mouse (19), and PPARα has been identified as a direct acti-
vator of a number of gluconeogenic genes (2, 34, 35). Although 
there are confounding reports (e.g., ref. 36), gluconeogenesis 
provides a clear example of complementary but opposing regu-
latory effects of PPARα and FXR.

The impact of the two nutrient sensors on pathways of glu-
cose utilization in the fed state has been less studied. There is 
a report that treatment with the PPARα agonist fenofibrate 
decreased expression of glucokinase and pyruvate kinase (PK), 
which was accompanied by strongly increased expression of the 
key pyruvate dehydrogenase inhibitor PDK4 and decreased gly-
colytic flux (37). There are a number of other reports that PPARα 
can induce PDK4 in mouse and human hepatocytes (38, 39). 
Suppression of glycolysis by PPARα is consistent with its func-
tion in a fasted state. However, loss of FXR function in Nr1h4–/– 
(Fxr–/–) mice was associated with increased glycolytic flux in the 
refed state, indicating that FXR may also suppress glycolysis 
(40). This suppression was mainly attributed to decreased 
expression of liver PK (LPK) in the refed Fxr–/– livers, but FXR 
was also found to induce PDK4 expression in rat and human 
hepatocytes (41).

In lipid metabolism, the clearest impact of either of the two 
receptors is the activation of FAO by PPARα in the fasted state (2). 
Multiple studies with synthetic agonists and Ppara–/– mice sup-
port this conclusion, which is reinforced by the ability of PPARα 
agonists to induce the lipolytic metabolic hormone FGF-21 (42). 
The impact of FXR activation on FAO is less clear, but dietary 
treatment with the bile acid cholic acid reportedly inhibited pri-
mary PPARα targets, including hepatic mRNA expression of the 
FAO enzymes acyl-CoA oxidase (Acox1), bifunctional enzyme 
(Ehhadh), and thiolase (Acaa1a) (43). We found higher expression 
of FAO genes in Fxr–/– mice (31), and treatment of db/db mice with 
the FXR agonist GW4064 decreased ketogenesis ( 3 2 ) . These 
results indicate that FAO provides another example of opposing 
effects of PPARα and FXR. However, FGF-21 has also been identi-
fied as a direct target of FXR (38, 44), and the ability of FXR acti-
vation to induce PDK4 (41) should also support FAO.

We (45) and others (46) have attributed the suppression 
of lipogenesis upon FXR activation to SHP induction and sub-
sequent suppression of SREBP1c expression. Others have sug-
gested that FXR inhibition of the well-known SREBP1c targets 
fatty acid synthase (Fasn) and acetyl-CoA carboxylase (Acc1) is 
independent of effects on SREBP1c (40). Inhibition of lipogenesis 
is consistent with the ability of FXR agonists to improve multiple 
aspects of the metabolic syndrome, not only in mouse models (31, 
32), but also in humans (47); however, it is obviously inconsistent 
with the induction of this pathway in the fed state. There is less 
information on the impact of PPARα on de novo lipogenesis. There 
is a report that chronic fenofibrate treatment induces lipogen-
esis in concert with induction of FAO (37), a futile cycle that is not 
observed in response to fasting, and analysis of Fasn gene expres-
sion in fasted and fed Ppara–/– mice did not support a lipogenic 
effect (48).  Instead, fenofibrate repressed lipogenic gene expres-
sion in high-fat– and high-cholesterol–fed LDL receptor 
knockout mice (49). Direct assessment of hepatic lipogenesis 
in hamsters fed a high-fructose diet (50) and, more importantly, 

because it adds a dual role of the nutrients functioning as signals 
to induce their own utilization. However, PPARα activation in the 
fasted state does not depend on the fatty acids present in the diet 
(21),  and there is evidence that the endogenous ligand is a prod-
uct of hepatic lipogenesis (4). Direct analysis of lipids bound to 
liver PPARα suggested that the endogenous agonist is a relatively 
abundant phospholipid (22). Endocannabinoids, including oley-
lethanolamide, have also been identified as potential endog-
enous agonists (23), and the exact identity of the endogenous 
PPARα agonist(s) remains unclear. Interestingly, PPARα activity 
is reportedly suppressed in the fed state by a pathway depen-
dent on mTORC1 activation of nuclear receptor co-repressor 
1; inactivation of mTORC1 in the fasted state promotes appro-
priate PPARα activation (24).

The role of bile acids as endogenous agonist ligands for FXR 
is well established (25–27). Bile acid homeostasis is an impor-
tant liver function that controls enterohepatic circulation of bile 
acids (5). Hepatic FXR is activated by the bile acids that return to 
the liver accompanied by the nutrients that they help to absorb. 
A recent report indicates that FXR is stabilized and activated by 
high glucose levels via O-GlcNAcylation. (28). In addition, FXR 
activation in the small intestine induces production of FGF-15 
(FGF-19 in humans), which exerts insulin-like effects in the 
liver, including induction of protein and glycogen synthesis (29, 
30). FXR activation is a consistent component of the fed state.

Opposing metabolic regulatory functions 
of PPARα and FXR in glucose and lipid 
metabolism
As noted above, their functions in opposite hepatic nutrient 
responses suggest that PPARα and FXR might have opposing 
effects on central metabolic pathways and liver energy balance. 
Among such pathways, gluconeogenesis is a key energy homeo-
stasis pathway that has a particularly strong association with 
the fasting and feeding cycle. We (31) and others (32, 33) showed 
that FXR activation suppresses gluconeogenic genes via induc-
tion of the corepressor nuclear receptor SHP. In the opposite 

Figure  1. Regulation of fundamental pathways of nutrient metabo-
lism by PPARα and FXR. The impact of FXR on glycolysis is not well 
understood. Green arrows indicate activation; red bars indicate repression. 
FFA, free fatty acid; PC, phosphatidylcholine; BA, bile acid.
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fasting responses led us to hypothesize that they could have 
opposing effects on autophagy. We tested this by treating fasted 
and fed wild-type, Ppara–/–, and Fxr–/– mice with the PPARα and 
FXR agonists GW7467 and GW4064. We found that the PPARα 
a g o n i s t  induced autophagy, even when it was supposed to be off 
in the fed liver, while the FXR agonist suppressed it, even when it 
was supposed to be induced in the fasted liver (8). The two ago -
nists  had opposing effects on the expression of a large num-
ber of autophagy- related genes, and cistromics confirmed that 
such genes are highly enriched among both receptors’ primary 
targets. We also found that the normal physiologic induction of 
autophagy in the fasted state was significantly decreased in Ppa-
ra–/– livers.  In  Fxr–/– livers the expected inhibition of autophagy 
in the fed state was also blunted. These genetic results strongly 
reinforce the pharmacologic results and establish physiologic 
roles for both receptors a s  m e d i ato rs  of normal nutrient regu-
lation of autophagy. The suppression of autophagy by FXR acti-
vation was confirmed by a companion manuscript (52).

Mechanistic studies showed that both PPARα and FXR could 
bind to DR-1 motifs (which were previously identified as positive 
response elements for PPARα) in the promoters of autophagy tar-
get genes, including genes encoding the autophagosome proteins 
microtubule-associated protein 1 light chain 3α and -β (LC3a and 
LC3b). FXR was not expected to bind to such sites, but this was 
confirmed by chromatin immunoprecipitation from wild-type and 
mutant livers treated with or without the agonists. In accordance 
with the observed transcriptional repression, FXR binding was 
associated with GW4064-dependent corepressor recruitment. 
PPARα and FXR directly compete for binding to the LC3a and 
LC3b promoter sites, with each agonist both increasing the 
binding of its own receptor a n d  decreasing that of the other.

Regulation of the liver secretome by PPARα 
and FXR
A recent study of the genetic loss of FXR function in humans 
suggests an unexpected mechanism for PPARα and FXR to 
influence hepatic energy balance. We identified four patients 
from two families with loss-of-function mutations in the FXR 
(NR1H4) gene (9). Severe neonatal cholestasis was evident in all 
four patients, and two in one family were successfully treated 
with liver transplantation, while the other two died prior to one 
year of age. Cholestasis is expected from the role of FXR in bile 
acid control but is much more severe in FXR-deficient people than 
in Fxr–/– mice. All four patients also had coagulopathy. This unex-

in people with diabetes (51) showed the expected inhibitory effect 
of fenofibrate on this pathway. The impact of PPARα and FXR 
activation on primary pathways of energy metabolism is summa-
rized in Figure 1. These effects are consistent with their expected 
roles as mediators of the fasted and feeding responses. Their 
effects are often opposite, particularly their opposing effects on 
gluconeogenesis and FAO; however, this functional dichotomy 
is not universal, since both appear to suppress lipogenesis, and 
they have similar effects on the expression of specific important 
metabolic regulators, notably PDK4.

PPARα and FXR coordinately regulate 
autophagy
Autophagy is a process by which essential nutrients can be recov-
ered in times of deprivation via recycling of cellular components. 
The functions of PPARα and FXR as mediators of the fed and 

Figure 2. Suppression of liver-specific gene expression by PPARα activa-
tion. (A) A list of 333 liver-specific genes from Pattern Gene Database 
(PaGenBase; http://bioinf.xmu.edu.cn/PaGenBase) was compared with an 
NCBI Gene Expression Omnibus fenofibrate-treated liver microarray (GEO 
GSE67796). The expression of 145 liver genes was found to be altered  
(P < 0.01), 110 (75.8%) of which were significantly downregulated by 
PPARα agonist treatment (hypergeometric test P = 1.89 × 10–38). (B) The 110 
common genes were subjected to analysis using Database for Annotation, 
Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/), 
to address their cellular compartment (gene ontology–cellular compart-
ment [GO-CC]), biological pathways (gene ontology–biological pathways 
[GO-BP]), and KEGG pathway associations. A majority of the genes encode 
secreted proteins located in extracellular space.
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induction result was supported by a modest but significant increase 
in clotting rate in people with non-alcoholic steatohepatitis treated 
with obeticholic acid, a semisynthetic FXR agonist (47). Overall, it 
is clear that FXR directly regulates components of the complement 
and coagulation cascade.

There is extensive evidence that PPARα represses the same 
complement and coagulation pathways described above. Gene 
array profiling of the effects of the PPARα agonist ciprofibrate in 
the cynomolgus monkey showed the expected upregulation of FAO 
and other known targets but also strong downregulation of many 
complement and coagulation genes (11). In mice the complement 
and coagulation cascades were repressed by fasting (55) and were 
among the strongest negative targets of fenofibrate (10); they were 
also repressed by PPARα agonists in rats (56). Repression of fibrin-
ogen gene expression by fenofibrate was lost in Ppara–/– mice (57). 
Complement genes are also repressed by fibrates in human hepa-
tocytes (58), and fibrate treatments decrease fibrinogen levels in 
human serum (59, 60). The combination of either gemfibrozil (52) 
or fenofibrate (53) with warfarin markedly decreases clotting rates, 
although this has been attributed to pharmacodynamic effects 
related to displacement of warfarin from plasma albumin (61).

The metabolic functions of FXR and PPARα seem quite unre-
lated to coagulation; however, we have identified a potential link-
age based on the idea that secretion is, in a sense, the inverse of 
autophagy: amino acids and energy in proteins are recovered by 
autophagy but are lost by secretion. Secretion is directly relevant 
to energy balance because it is arguably the most resource- and 
energy-intensive process in the liver. Since approximately 40% of 
all hepatocyte mRNAs encode secretory proteins (62), nearly half 
of the total protein produced by each hepatocyte is simply lost via 
secretion. This is a huge drain on resources. For the human liver, 
the daily total protein secretion is approximately 25 grams per day 
(63, 64), which corresponds to roughly half of the recommended 
daily protein consumption. Decreases in oxygen consumption 
upon cycloheximide treatment indicate that up to 10% of hepato-
cyte ATP goes to production of these secreted proteins (65). Thus, 
we extend the complement and coagulation pathways to the entire 
hepatocyte secretome and suggest that FXR licenses the process 
of secretion in the nutrient-rich fed state while PPARα spares 
resources by repressing it in the fasted state.

pected phenotype was present from birth, well before the onset 
of severe liver symptoms, and therefore could not be attributed 
to end-stage liver disease. Four quite separate lines of evidence 
support a direct role for FXR as the complement and coagulation 
pathways. First, we showed that GW4064 induces multiple com-
ponents of the complement and coagulation pathway in a human 
hepatocyte cell line (9), extending previous results with fibrinogen. 
Second, analysis of genome-wide FXR binding studies in mouse 
and human hepatocytes showed complement and coagulation 
third on the list of targeted pathways (53). Third, one study asso-
ciated cholestasis due to diverse etiologies with increased coagu-
lability (54). This was termed “paradoxical” due to the expected 
association of coagulopathy with severe liver disease but is exactly 
as expected for a direct transcriptional effect of FXR. Finally, this 

Figure 3. Overlapping target genes oppositely regulated by FXR and 
PPARα. (A) Three microarray data sets (fenofibrate, GSE67796; Fxr knockout, 
GSE20599; Wy-14,643, GSE8295) were analyzed. Among a total of 14,026 
genes, 2,634 (for fenofibrate), 2,028 (for Fxr knockout), and 4,671 genes 
(for Wy-14,643) were responsive to either PPARα activation (fenofibrate 
and Wy-14,643 treatment) or FXR genetic loss (P < 0.01), and many were 
responsive to both — fenofibrate treatment and Fxr knockout had 765 genes 
in common, and Fxr knockout and Wy-14,643 treatment had 1,104 genes 
in common. The majority of overlapping genes were regulated in the same 
direction (induced or repressed in both; 67.2% and 61.3% in each comparison). 
(B) DAVID analysis (https://david.ncifcrf.gov) of commonly regulated genes 
in the two comparisons of PPARα activation/FXR inhibition microarrays. Key 
aspects of increased or decreased genes were their locations in mitochondri-
on, membrane, endoplasmic reticulum, or extracellular space and functions 
as metabolic pathways, complement/coagulation, or fatty acid metabolism. 
Word cloud analysis (http://www.wordle.net) showed representation of the 
frequency of terms in the DAVID analysis outputs of the Gene Ontology Cel-
lular Component (left) and KEGG pathway (right) (P < 0.05).
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Altered nuclear receptor signaling in extreme 
nutrient deprivation
A more complete understanding of coordinate regulation of nutri-
ent-sensing nuclear receptors has a potential impact on numer-
ous pathologic conditions affected by liver energy imbalance. 
Although the current research focus is largely on overnutrition-
associated metabolic syndrome, there is also great potential for 
relevance in child undernutrition. Globally, undernutrition con-
tributes to half of all deaths of children under five years of age (68). 
When present in early childhood, undernutrition confers long-
term deficits in growth potential and IQ, along with increased risk 
of obesity and related disorders later in life (69). Despite recent 
progress by the Millennium Development Goals (70), more than 
113 million children worldwide remain underweight (71).

Similar to the acutely fasted state, chronic undernutrition 
requires the host to conserve and recycle amino acids and energy. 
Accordingly, signs of suppressed secretion and enhanced autoph-
agy have been identified in protein calorie–restricted humans. 
Most notably, hypoalbuminemia is a hallmark of the severe, 
edematous form of undernutrition known as kwashiorkor (72). 
Likewise, dozens of studies have reported low plasma levels of 
complement proteins, in particular C3, in undernourished chil-
dren (73). Suppressed secretion of complement likely contributes 
to the impaired cell-mediated immunity that is a feature of many 
forms of undernutrition (74).

Two other important secretory defects have been observed 
in chronic undernutrition. First, undernourished children have 
decreased plasma concentrations of coagulation factors with 
elevated prothrombin time (75–83). This coagulopathy often 
manifests as bruising but in rare cases can result in severe gastro-
intestinal hemorrhage (75, 81). Although the vitamin K–depen-
dent factors II, VII, IX, and X are often decreased, many cases 
of coagulopathy in severe undernutrition are associated with 
decreased vitamin K–independent coagulation factors (80, 82) 
(71, 73) or are refractory to intravenous vitamin K therapy (75). 
More recently, coagulopathy was reported in a cohort of young 
adults with severe anorexia nervosa (84). Second, undernourished 
children have decreased concentrations of small intestinal conju-
gated bile acids (85–87), which leads to impaired lipid solubiliza-
tion (88). Decreased bile acid secretion likely contributes to the 
observed dietary fat malabsorption (89–95), fat-soluble vitamin 
deficiencies (96), and small intestinal bacterial overgrowth (97–
102). Decreased bile acids might also help explain why therapeu-
tic refeeding often fails to result in sustained growth (103–105). 
Invasive small bowel sampling is no longer performed strictly 
for research purposes; however, a more recent study investigat-
ed fecal bile acids obtained from Malawian children with severe 
acute undernutrition who were admitted for inpatient nutritional 
rehabilitation. Nutritional recovery was associated with a nearly 
seven-fold increase in median concentration of conjugated bile 
acids in stool, compared with levels measured at hospital admis-
sion (106). Taken together, these findings suggest that undernour-
ished individuals have decreased secretion of albumin, comple-
ment proteins, coagulation factors, and bile acids.

In addition to reduced secretion, there is also evidence that 
chronic protein calorie undernutrition upregulates autophagy. 
Numerous autophagosomes were identified with electron micros-

The regulation of the process of secretion in the fed and fasted 
states has been known for decades. Studies nearly 40 years ago 
showed that essentially all albumin mRNA is present on secre-
tory rough endoplasmic reticulum polysomes in the fed rat liver, 
as expected, but the majority of these transcripts are released 
into the untranslated post-ribosomal pool in the fasted liver (66). 
In accord with this, human albumin production shows a two-fold 
daily fluctuation in production in the fed and fasted states (63), 
although this does not acutely affect serum albumin levels due to 
the approximately two-week half-life of the protein (64). Thus, the 
proposed PPARα and FXR effects represent the addition of a new 
transcriptional mechanism to a well-established regulatory effect. 
An intriguing aspect of this hypothesis is that it is completely inde-
pendent of the diverse functions of the secreted proteins, which 
presumably are regulated by additional inputs. Instead we suggest 
that the impact of the secretome on hepatocyte energy balance is 
the basis for its apparent regulation by PPARα and FXR.

Available genome-wide profiling studies provide some sup-
port for the prediction that PPARα and FXR coordinately control 
the hepatocyte secretome. In one profile of fenofibrate effects in 
mice (67), nearly half (145/333) of a panel of liver-specific genes 
were altered by PPARα agonist treatment, and of these 110 (75.8%) 
were repressed (Figure 2A). As confirmed with analyses using 
Gene Ontology (www.geneontology.org) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG; www.kegg.jp/) (Figure 2B), 
these suppressed genes are highly enriched for secreted proteins, 
including many in addition to the components of the complement 
and coagulation cascades. This enrichment of PPARα-repressed 
secretory targets is highly statistically significant.

A further analysis compared transcripts affected by genetic 
loss of FXR with those altered by the PPARα agonists fenofibrate 
or Wy-14,643. The two comparisons identified more than 750 
and 1,100 transcripts affected by both loss of FXR function and 
gain of PPARα function. In accordance with the opposite nutrient 
roles of the two nuclear receptors, concordant responses — either 
increased or decreased in both PPARα agonist and Fxr knockout 
— were much more common (67%) than discordant respons-
es in the fenofibrate comparison (Figure 3A). Similarly, in the 
Wy-14,643 comparison, 61% of the common genes were altered 
in the same direction by PPARα activation and FXR inactiva-
tion. The increase in coordinate responses relative to discordant 
responses was highly statistically significant with the hypergeo-
metric test. As expected, pathway analysis of the gene set repre-
senting PPARα activation and FXR inactivation highlighted FAO 
and additional PPARα targets relevant to energy balance, includ-
ing mitochondrial function (Figure 3B). Additionally, secretome 
components were highly enriched in the gene set repressed by 
both PPARα agonists and Fxr knockout, as determined using 
both Gene Ontology and KEGG pathway analysis (Figure 3B). In 
the Gene Ontology analysis, nearly a quarter of the 412 genes in 
this category appeared in extracellular exosome (GO:0070062; 
105 of 412; P = 8.92 × 10–12), extracellular region (GO:9995576; 
134 of 412; P = 2.16 × 10–7) or extracellular vesicle (GO:1903461; 
105 of 412; P = 1.31 × 10–11). Overall these results strongly support 
the predominance of the opposite effects of PPARα and FXR ago-
nists but also leave open the possibilities of convergent effects, 
such as those observed with lipogenesis.
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copy analysis of liver biopsy samples obtained from young adults 
with severe anorexia nervosa (84). Another recent study exam-
ined autophagic gene transcript and protein expression levels in 
skeletal muscle biopsies from otherwise healthy adults who had 
maintained a calorie-restricted diet for three or more years. Com-
pared with sedentary individuals consuming Western diets, skele-
tal muscle from those with long-term calorie restriction contained 
numerous upregulated autophagic markers (107).

Overall, the decreased secretion and increased autophagy sug-
gests that chronic protein calorie undernutrition in some respects 
parallels the acutely fasted state, with an imbalance between 
PPARα and FXR signaling. Fatty acids mobilized from peripheral 
fat stores might serve as endogenous PPARα ligands, whereas lack 
of FXR signaling might result from decreased bile acid synthesis. 
Indeed, we (108) and others (109) have reported striking decreas-
es in conjugated bile acids in mouse models of protein energy 
undernutrition. Our metabolomic screen also revealed evidence 
of increased FAO and autophagy (108). However, recent studies 
using a rat model of undernutrition induced by a low-protein diet 
revealed hypoalbuminemia, loss of peroxisomes in hepatocytes, 
and impaired peroxisomal and mitochondrial function — effects 
that were partially ameliorated by the PPARα agonist fenofibrate 
(110). These data suggest a lack of PPARα signaling in this protein-
deficient rat model, raising the possibility that endogenous ligands 
fail to activate PPARα and the resulting homeostatic effects. Alter-
natively, pathways other than PPARα signaling might contribute to 
FAO and energy-sparing suppression of secretion during chronic 
macronutrient deprivation.

Our quest to better understand nuclear receptor function 
and regulation in the undernourished host faces several chal-
lenges. These include integrating the coordinate activities of 
other nuclear receptors (such as vitamin D receptor) in settings 
of highly prevalent micronutrient deficiencies; evaluating liver 
secretory effects in the context of occult or overt liver diseases, 
including those related to undernutrition- associated steatosis 
or infections with helminth or viral pathogens; and navigating 
the challenges inherent to performing translational studies with 
extremely vulnerable patient populations. Nonetheless, we 
anticipate that defective PPARα or FXR signaling may be rel-
evant to vexing questions, such as why some children are sus-
ceptible to hypoalbuminemia and kwashiorkor, whereas others 
develop marasmus, the non-edematous form of undernutrition. 
Proper nuclear receptor activation may also provide an opportu-
nity to improve refeeding practices, reduce mortality, enhance 
catch-up growth, and decrease long-term metabolic complica-
tions of early-life undernutrition.

Conclusions
Gemfibrozil and fenofibrate are the two fibrates currently 
approved for use in the US. Based on their ability to lower serum 
triglycerides and decrease cardiovascular events, their usage 
approximately doubled in the US from 2004 to 2009 (111). In 
2010, results from the Action to Control Cardiovascular Risk in 
Diabetes (ACCORD) trial confirmed that the addition of fenofi-
brate to simvastatin decreased cardiovascular risk in the subset 
of simvastatin-treated patients with relatively high triglycerides 
and low HDL (112), and it is likely that fibrate usage will continue 

to increase. The FXR Ligand Obeticholic Acid for Non-cirrhotic, 
Non-alcoholic Steatohepatitis (FLINT) trial recently showed 
that the bile acid derivative obeticholic acid improves multiple 
parameters of metabolic syndrome (47). Thus, obeticholic acid, 
which was very recently approved for the treatment of cholestat-
ic liver disease (113), may also come into common use for treat-
ing metabolic syndrome.

The common beneficial impact of both PPARα and FXR ago-
nists on aspects of metabolic syndrome seems inconsistent with 
many of the results outlined above. How can activation of two 
receptors with apparently opposite metabolic functions have simi-
lar beneficial effects? One possibility relates to the ability of both 
to suppress lipogenesis. As suggested by the late Denis McGarry, 
increased lipogenesis in the insulin-resistant liver can drive a 
vicious cycle in which increased steatosis reinforces insulin resis-
tance, which in turn drives even more steatosis (114). In response 
to activation of several nuclear receptors, including FXR and pos-
sibly PPARα, this cycle may be reversed (115). In this model, inhi-
bition of lipogenesis in response to receptor activation improves 
fatty liver and promotes insulin sensitivity, which in turn further 
suppresses lipogenesis and propagates as a beneficial cycle. For 
PPARα, this model is consistent with results in mice (116) and 
with some reports in humans that suggest insulin sensitivity is 
improved in response to fenofibrate treatment (117–120). How-
ever, the model is not supported by other clinical studies that have 
not shown either decreased steatosis (121) or increased insulin 
sensitivity in humans in response to fenofibrate (121–124).

There are still hundreds of genes that respond in the same 
direction to activation of the two nuclear receptors that may pro-
vide additional specific mechanisms. More broadly, we conclude 
that the preponderance of opposing effects of PPARα and FXR 
(Figure 3) correlates with their complementary activation in the 
fed and fasted states. This means that the two receptors do not sim-
ply cancel each other’s effects. Instead, in specific pathways such 
as activation and suppression of gluconeogenesis and autophagy 
in the fasted and fed states, the two nutrient sensors function coor-
dinately in the appropriate nutrient contexts to appropriately regu-
late metabolic flux and energy balance. This suggests that specific 
activation of each in the correct portion of the daily cycle could 
promote proper metabolic balance via quite distinct mechanisms. 
Perhaps combinations of PPARα and FXR agonists would have 
reinforcing or synergistic beneficial effects if it were pharmaco-
logically possible for each to target only the appropriate state.
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