Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine

Jin Xu,1 Zhigang Lu,2,3 Ankita Narayan,1 Valerie P. Le Rouzic,1 Mingming Xu,1 Amanda Hunkele,1 Taylor G. Brown,1 William F. Hoefner,4 Grace C. Rossi,4 Richard C. Rice,5 Arlene Martinez-Rivera,5 Anjali M. Rajadhyaksha,5 Luca Cartegni,6 Daniel L. Bassoni,7 Gavril W. Pasternak,1 and Ying-Xian Pan1

1Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 2Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, and 1First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China. 3Department of Psychology, Long Island University, Post Campus, Brookville, New York, USA. 4Division of Pediatric Neurology, Department of Pediatrics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA. 5Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. 6DiscoverX Corporation, Fremont, California, USA.

The authors have declared that no conflict of interest exists.

Conflict of interest: J. Xu, Z. Lu, and A. Narayan contributed equally to this work.

Authorship note: J. Xu, Z. Lu, and A. Narayan contributed equally to this work.

Introduction

Most clinically used opiates, including morphine, act through the mu opioid receptor (1), producing both potent analgesia and a number of side effects, such as tolerance, physical dependence, constipation, respiratory depression, and addiction. The different responses to various mu drugs seen clinically (2, 3) and in animal models (4–6) suggested the existence of multiple mu opioid receptors, a concept initially proposed from classic pharmacological studies (7) and reinforced with the identification of an array of mu opioid receptor variants produced by alternative pre-mRNA splicing of the single-copy mu opioid receptor gene (OPRM1) (see review, refs. 8, 9).

Alternative splicing is commonly seen among G protein–coupled receptors (GPCRs) (10–12). However, the extensive alternative splicing of OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7–associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4–associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7–associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4–associated variant, suggesting an interaction of exon 7–associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3′ alternative splicing.

Extensive 3′ alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7–associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4–associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7–associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4–associated variant, suggesting an interaction of exon 7–associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3′ alternative splicing.

Related Commentary: p. 1221

Authorship note: J. Xu, Z. Lu, and A. Narayan contributed equally to this work.

Conflict of interest: The authors have declared that no conflict of interest exists.

References:

1. Xu, J.; Lu, Z.; and Narayan, A. Contributed equally to this work.

Submitted: May 23, 2016; Accepted: January 12, 2017.
At the cellular level, all the 7TM C-terminal variants expressed in CHO cells bind \(^{[3]H}\)D-Ala\(^2\)MePhe\(^4\)Gly(oil) \((\text{DAMGO})\), a mu agonist, with high affinity and with only subtle differences in selectivity for the endogenous opioid peptides dynorphin A and \(\beta\) endorphin (18, 25, 26). However, in \([\text{S}]\text{GTP} \gamma \text{S}\)-binding assays, these C-terminal splice variants displayed marked differences in mu opioid-induced \(\gamma\) protein coupling in both potency (\(E_C^{50}\)) and efficacy (% of maximal stimulation) (26, 27), suggesting that the distal carboxyl terminal sequences influence mu agonist-induced receptor–\(\gamma\) protein coupling and signal transduction. Multiple protein kinase phosphorylation sites are predicted from various alternative C-terminal sequences, and in vitro studies revealed differences in mu agonist–induced phosphorylation, internalization, and postendocytic sorting among several C-terminal splice variants (28, 29). However, in vivo functions of these C-terminal splice variants remain largely unknown.

The current study explores the functional significance of alternative C termini by generating 3 mutant mouse models with truncations of the distal end of the C terminus in 2 different inbred strains. By truncating either all C-terminal tails or selectively truncating C-terminal tails encoded by \(Oprml\) exon 4 or exon 7, we now show the importance of these C-terminal tails in morphine tolerance, physical dependence, locomotor activity, and rewarding behavior, and suggest a role for exon 7–associated C terminus with \(\beta\)-arrestin-2 and morphine-induced desensitization and tolerance.

Results

Targeting intracellular carboxyl termini of the mu opioid receptors in mice. To target intracellular C-terminal tails that are generated through alternative splicing downstream from \(Oprml\) exon 3 to the different downstream exons, we introduced a stop codon at the end or beginning of the targeted exon to produce 3 targeted mouse models without deletion of any individual exons (Supplemental Figure 1 and Supplemental Figure 2, A and B). The first mouse model (mE3M) was generated by inserting a stop codon at the 3′ end of \(Oprml\) exon 3 that prevents translation of all exons downstream of exon 3, even though their mRNAs are expressed. Thus, the mE3M homozygous mice express only truncated mu opioid receptors lacking any distal C-terminal tails. In the other 2 mouse models (mE4M and mE7M), we introduced a stop codon at the 5′ end of \(Oprml\) exon 4 or exon 7 to selectively terminate translation at the end of exon 3 only in exon 4–or exon 7–associated variants in mE4M or mE7M mice, respectively (Supplemental Figure 1 and Supplemental Figure 2, A and B).

All the stop codon mutations were introduced into W4 embryonic stem (ES) cells derived from C57BL/6J (B6) mice through homologous recombination using targeting vectors. Positive ES cells determined by Southern blot analysis were used to generate germ line–transmitting chimeras (Supplemental Figure 2C; see complete unedited blots in the supplemental material). WT and homozygous mice were produced through heterozygous breeding, identified by PCR restriction enzyme digestion (Supplemental Figure 2D) and confirmed by sequencing (Supplemental Figure 2E). The selection cassette (pgk-neo) was then removed by breeding with a CAG-Cre transgenic line to eliminate the potential influence of the cassette on transcription and splicing. As B6 and 129 mice have markedly different responses to mu opioids (30–32), we generated 2 sets of congenic mice for each mutant model on a B6 strain background (mE3M-B6, mE4M-B6, and mE7M-B6 WT and homozygous mice) and on a 129 strain background (mE3M-129, mE4M-129, and mE7M-129 WT and homozygous mice) by using traditional breeding combined with speed congenic breeding. Sequencing the exon-exon junctions of reverse-transcription PCR (RT-PCR) products from brain total RNAs confirmed that all the stop codon mutations were present, as expected (Supplemental Figure 2F). The WT control mice for each set of congenic lines and their corresponding homozygous mice were generated through heterozygous breeding and used for in vivo behavioral and ex vivo studies.

Expression of the mu opioid receptors in the targeted mouse models. To examine the effect of the stop codon mutations on mRNA expression, we quantified the mRNA levels of a number of splice variants in brains of the mutant mouse models using quantitative PCR (qPCR). The overall mRNA expression levels of the combined repertoire of full-length 7TM splice variants, determined by the primer set from exon 1 to exon 2 (mE1-2), failed to demonstrate significant differences in any of the mouse models regardless of the strain backgrounds (Supplemental Tables 1 and 2). Similarly, the mRNA levels of individual 7TM variants \(\text{mMOR-1A}, \text{mMOR-1D}, \text{mMOR-1I}, \text{mMOR-1O}\), and \(\text{mMOR-1C}\) were not appreciably altered in homozygous mice of all the models (Supplemental Tables 1 and 2). These results suggest that the stop codon mutations in mE3M, mE4M, and mE7M models did not have a generalized impact on their transcription and alternative splicing. However, the mRNA levels of \(\text{mMOR-1C}\) and \(\text{mMOR-1M}\) were greatly reduced in both the mE3M and mE7M mouse models. These reductions were probably due to nonsense-mediated mRNA decay, a process that degrades mRNA with a stop codon located more than 50 nucleotides upstream of the last exon-exon junction, because the stop codon insertions in the mE3M and mE7M models produce such a premature stop codon.

Protein expression of the full complement of 7TM variants was accessed by opioid receptor binding, recognizing that it measured the total pool of 7TM variants. Receptor expression levels are best assessed with antagonist binding, since the ligand labels both agonist and antagonist conformations to yield the full \(B_{\text{max}}\) (total density [concentration] in a sample of tissue) value. The maximal number of \(\text{[H]}\)naltrexone–binding sites (\(B_{\text{max}}\)), an indicator of receptor–protein expression, was significantly reduced in mE3M and mE4M homozygous mice on both 129 and B6 backgrounds (Table 1), but not in the mE7M mice. We observed no changes in binding affinity in either \(\text{[H]}\)naltrexone saturation (Table 1) or competition studies with the mu agonists morphine, morphine-6-glucuronide (M6G), dynorphin A, and \(\beta\) endorphin, and the antagonist naltrexone against \(\text{[H]}\) DAMGO binding (Supplemental Table 3).

Effect of the C-terminal truncation on mu agonist–induced \([\text{S}]\text{GTP} \gamma \text{S}\) binding. The C terminus is critical for receptor–\(\gamma\) protein interaction and signal transduction. To determine whether the C-terminal truncation alters mu agonist–induced \(\gamma\) protein coupling, we examined DAMGO- and morphine-stimulated \([\text{S}]\text{GTP} \gamma \text{S}\) binding in whole brain membranes from the mutant mouse models. The truncations had little effect on \(E_D^{50}\) values, but significantly reduced DAMGO- and morphine-induced maxi-
chronic morphine administration further confirmed these results (Figure 1B and Table 4). Chronic morphine markedly shifted the curves to the right and increased the ED_{50} values in both mE3M-129 and mE4M-129 homozygous mice, while the same morphine treatment did little in the respective WT 129 control mice.

Truncating exon 7–associated C-terminal tails in B6 (mE7M-B6 homozygous) mice had an opposite effect, with little change in morphine responsiveness over 5 days compared with that in the WT B6 littermate controls (Figure 1A). Cumulative dose-response studies revealed only a slight shift to the right in mE7M-B6 homozygous mice following chronic morphine (2.2-fold) compared with a significantly greater shift in WT B6 control mice (5.2-fold) (Figure 1B and Table 4). Since WT 129 mice showed little change with chronic morphine, it was not surprising to see that mE7M-129 homozygous mice also did not develop significant tolerance. Together, these results illustrate the divergent effects of exon 4– and exon 7–associated C-terminal tail truncations on morphine tolerance.

Effect of an antisense vivo-morpholino oligo targeting exon 7 inclusion on morphine tolerance and dependence in CD-1 mice. To further investigate the function of Oprm1 exon 7–associated C-terminal variants in morphine tolerance and dependence, we used a knockdown strategy with an antisense vivo–morpholino oligo (ANT-vMO) that targets the intron/exon 7 junction to block splicing from exon 3 to exon 7, eliminating exon 7–containing transcripts. i.c.v. administration of the ANT-vMO in the CD-1 strain of mice effectively reduced Oprm1 exon 3/7 splicing and downregulated exon 3/7–associated variant mRNAs, as determined by qPCRs, without significantly altering exon 1/exon 2– or exon 3/exon 4–containing transcripts (Figure 1C). The mismatch-morpholino oligo (MIS-vMO) or PBS was inactive. Mice treated with PBS or mis-morpholigo oligo displayed normal morphine tolerance after 5-day morphine treatment. However, mice treated with the ANT-vMO showed little morphine tolerance (Table 4).

Table 1. Saturation studies using [3H]naloxone

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Genotype</th>
<th>K_v (μM)</th>
<th>B_{max} (fmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mE3M-129</td>
<td>WT</td>
<td>0.63 ± 0.02</td>
<td>86.6 ± 7.9</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.73 ± 0.09</td>
<td>57.4 ± 5.6</td>
</tr>
<tr>
<td>mE3M-B6</td>
<td>WT</td>
<td>0.62 ± 0.05</td>
<td>58.9 ± 6.3</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.66 ± 0.09</td>
<td>35.0 ± 5.2</td>
</tr>
<tr>
<td>mE4M-129</td>
<td>WT</td>
<td>0.72 ± 0.02</td>
<td>86.0 ± 5.5</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>1.48 ± 0.36</td>
<td>61.2 ± 5.5</td>
</tr>
<tr>
<td>mE4M-B6</td>
<td>WT</td>
<td>1.02 ± 0.36</td>
<td>64.6 ± 6.2</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.99 ± 0.29</td>
<td>30.4 ± 9.4</td>
</tr>
<tr>
<td>mE7M-129</td>
<td>WT</td>
<td>1.41 ± 0.33</td>
<td>81.8 ± 16.9</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>1.21 ± 0.22</td>
<td>77.0 ± 7.3</td>
</tr>
<tr>
<td>mE7M-B6</td>
<td>WT</td>
<td>0.89 ± 0.05</td>
<td>64.0 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.99 ± 0.12</td>
<td>59.9 ± 6.9</td>
</tr>
</tbody>
</table>

Table 2. [35S]GTPγS binding

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Genotype</th>
<th>EC_{50} (μM)</th>
<th>% Maximum stimulation</th>
<th>EC_{50} (μM)</th>
<th>% Maximum stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mE3M-129</td>
<td>WT</td>
<td>0.41 ± 0.1</td>
<td>78 ± 3</td>
<td>0.22 ± 0.1</td>
<td>57 ± 3</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.20 ± 0.1</td>
<td>49 ± 2</td>
<td>0.28 ± 0.1</td>
<td>41 ± 5</td>
</tr>
<tr>
<td>mE3M-B6</td>
<td>WT</td>
<td>0.37 ± 0.2</td>
<td>73 ± 3</td>
<td>0.22 ± 0.1</td>
<td>56 ± 5</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.64 ± 0.3</td>
<td>39 ± 10</td>
<td>0.18 ± 0.1</td>
<td>29 ± 9</td>
</tr>
<tr>
<td>mE4M-129</td>
<td>WT</td>
<td>0.33 ± 0.1</td>
<td>74 ± 12</td>
<td>0.26 ± 0.1</td>
<td>51 ± 2</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.36 ± 0.3</td>
<td>37 ± 3</td>
<td>0.22 ± 0.1</td>
<td>38 ± 3</td>
</tr>
<tr>
<td>mE4M-B6</td>
<td>WT</td>
<td>0.21 ± 0.1</td>
<td>66 ± 4</td>
<td>0.53 ± 0.1</td>
<td>49 ± 5</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.43 ± 0.0</td>
<td>33 ± 1</td>
<td>0.23 ± 0.1</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>mE7M-129</td>
<td>WT</td>
<td>0.11 ± 0.0</td>
<td>75 ± 1</td>
<td>0.45 ± 0.1</td>
<td>57 ± 7</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.20 ± 0.1</td>
<td>77 ± 6</td>
<td>0.14 ± 0.1</td>
<td>45 ± 3</td>
</tr>
<tr>
<td>mE7M-B6</td>
<td>WT</td>
<td>0.33 ± 0.2</td>
<td>71 ± 8</td>
<td>0.28 ± 0.2</td>
<td>52 ± 14</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>0.41 ± 0.2</td>
<td>65 ± 7</td>
<td>0.14 ± 0.1</td>
<td>44 ± 2</td>
</tr>
</tbody>
</table>
Effect of the C-terminal truncation on morphine reward behavior in B6 mice. Morphine CPP in WT and homozygous 129 mice at the same dose was not robust and was not significant (Supplemental Figure 4), consistent with previous findings (36).

Effect of the C-terminal truncation on morphine reward behavior. In WT B6 and 129 mice, morphine significantly increased locomotion, with a greater effect in B6 compared with 129 mice (Figure 2B), suggesting that exon 7–associated variants are involved in morphine reward behavior in B6 mice. Morphine CPP in WT and homozygous 129 mice at the same dose was not robust and was not significant (Supplemental Figure 4), consistent with previous findings (36).

Effect of the C-terminal truncation on morphine CPP. The WT 129 control mice all showed lower levels of jumping than WT B6 control mice (Figure 2A), consistent with previous observations (31). However, we observed even fewer jumps in E3M-B6 129 homozygous mice. As in the B6 background, the exon 7 truncation in the mE4M-B6 homozygous mice had little effect, except for a small, but significant, decrease in morphine’s inhibition of GI transit in mE4M-B6 homozygous mice compared with the WT controls (Supplemental Figure 4), consistent with the literature (37). Both mE4M-B6 and mE7M-B6 homozygous mice showed a modest, but significant, decrease in morphine-induced locomotion measured as total distance traveled compared with their respective WT B6 control mice, while the locomotor activity in mE3M-B6 homozygous mice was not significantly changed (Figure 2A and Supplemental Figure 4). A similar pattern was observed in all the mouse models on the 129 background, but the differences were not significant (Figure 3A). When analyzed by distance per minute, locomotor activity was significantly lower in mE4M-129 homozygous mice than in WT control mice (Supplemental Figure 5). These results indicate a modest effect of the C-terminal truncations in morphine-induced locomotor activity.

Effect of the C-terminal truncation on morphine inhibition of gastrointestinal transit. Morphine modulates gastrointestinal (GI) transit through activation of receptors on the myenteric plexus and centrally (38). Morphine (5 mg/kg) decreased charcoal transit in both B6 and 129 WT mice (Supplemental Figure 6). All the C-terminal truncations had little effect, except for a small, but significant, decrease in morphine’s inhibition of GI transit in mE4M-B6 homozygous mice compared with the WT controls (Supplemental Figure 6), consistent with our early observation that an antisense oligo targeting exon 4 reduced morphine inhibition of GI transit (39).

Effect of the C-terminal truncation on morphine-induced catalepsy. High doses of morphine induce catalepsy (40, 41), a condition of diminished responsiveness characterized by a trance-like state and immobility. In B6 mice, morphine produced dose-dependent and time-dependent cataleptic responses (Supplemental Figure 7). We therefore examined morphine catalepsy 30 minutes after mor-

Table 3. Morphine analgesia

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Genotype</th>
<th>Morphine ED<sub>50</sub> (mg/kg, s.c.)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>mE3M-129</td>
<td>WT</td>
<td>2.1 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.3 ± 0.2</td>
</tr>
<tr>
<td>mE3M-B6</td>
<td>WT</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>mE4M-129</td>
<td>WT</td>
<td>2.7 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>mE4M-B6</td>
<td>WT</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.2 ± 0.5</td>
</tr>
<tr>
<td>mE7M-129</td>
<td>WT</td>
<td>2.2 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td>mE7M-B6</td>
<td>WT</td>
<td>2.9 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>2.6 ± 0.5</td>
</tr>
</tbody>
</table>

^aED₅₀ values with 95% CIs (parentheses) were determined by nonlinear regression analysis (Prism).^bResults are shown as mean ± SEM of the ED₅₀ values determined from at least 3 independent dose-response studies. P<0.05, compared with WT. 1-way ANOVA with Bonferroni’s post hoc test.

Table 4. Morphine dose-response study before and after chronic morphine treatment

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Genotype</th>
<th>Morphine ED<sub>50</sub> (mg/kg, s.c.)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 1</td>
</tr>
<tr>
<td>mE3M-129</td>
<td>WT</td>
<td>2.2 (2.0–2.5)</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.1 (2.6–3.7)</td>
</tr>
<tr>
<td>mE4M-129</td>
<td>WT</td>
<td>2.7 (2.0–3.5)</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.4 (2.9–3.8)</td>
</tr>
<tr>
<td>mE7M-B6</td>
<td>WT</td>
<td>2.8 (2.3–3.5)</td>
</tr>
<tr>
<td></td>
<td>Mut</td>
<td>3.1 (2.6–3.6)</td>
</tr>
</tbody>
</table>

^aED₅₀ values with 95% CIs (parentheses) were determined by nonlinear regression analysis (Prism).^bResults are shown as mean ± SEM of the ED₅₀ values determined from at least 3 independent dose-response studies. P<0.05, compared with WT. 1-way ANOVA with Bonferroni’s post hoc test. The number of mice used was as follows: mE3M-129, 8 WT and 7 Mut; mE4M-129, 5 WT and 9 Mut; mE7M-B6, 10 WT and 9 Mut.
reduced morphine tolerance with exon 7 truncation in mE7M-B6 mice raised the question of whether or not the truncation altered receptor desensitization in these mice. We evaluated receptor desensitization by measuring morphine-stimulated \([35S]GTP^\gamma \) binding with membranes from 6 brain regions in the mE7M-B6 models after the 5 days of morphine treatment. There were no significant differences in the EC50 values among brain regions or groups of mE7M-B6 mice, and most regions failed to show morphine-induced changes in maximal stimulation in either WT or homozygous mice (Table 5 and Supplemental Figure 8), although the maximal stimulation in the periaqueductal gray (PAG) of saline-treated mE7M-B6 homozygous mice was significantly higher than in WT controls (Table 5 and Supplemental Figure 8). However, morphine treatment reduced the stimulation in the hypothalamus and brain stem in mE7M-B6 WT mice, but not in phine administration (60 mg/kg, s.c.) in mE3M-B6, mE4M-B6, and mE7M mice. Morphine induced catalepsy in all WT control and homozygous mice when compared with saline controls (Figure 3B). However, the truncated mutant B6 mice showed lower responses than their corresponding WT controls, suggesting involvement of all the C-terminal tails in morphine-induced catalepsy. The effect of truncation on catalepsy was not as robust in 129 mice as in B6 animals. As with the B6 mice, all the WT 129 control mice were cataleptic following morphine, but only mE4M-129 homozygous mice showed a smaller reduction than WT controls (Figure 3B).

Effect of the truncation of exon 7–associated C-terminal tails on \([35S]GTPyS\) binding in brain regions of mice chronically treated with morphine. Receptor desensitization has been proposed as one cellular mechanism contributing to morphine tolerance in both in vitro cell lines and in vivo rodent models (42–45). The reduced morphine tolerance with exon 7 truncation in mE7M-B6 mice raised the question of whether or not the truncation altered receptor desensitization in these mice. We evaluated receptor desensitization by measuring morphine-stimulated \([35S]GTPyS\) binding with membranes from 6 brain regions in the mE7M-B6 models after the 5 days of morphine treatment. There were no significant differences in the EC50 values among brain regions or groups of mE7M-B6 mice, and most regions failed to show morphine-induced changes in maximal stimulation in either WT or homozygous mice (Table 5 and Supplemental Figure 8), although the maximal stimulation in the periaqueductal gray (PAG) of saline-treated mE7M-B6 homozygous mice was significantly higher than in WT controls (Table 5 and Supplemental Figure 8). However, morphine treatment reduced the stimulation in the hypothalamus and brain stem in mE7M-B6 WT mice, but not in
mE7M-B6 homozygous mice (Figure 4 and Table 5). Binding studies from the same hypothalamus and brain stem tissues revealed no change in [3H]DAMGO binding after morphine treatment or between genotypes (Supplemental Table 4). Thus, these results suggest that morphine treatment desensitized mu opioid receptor coupling with G proteins in the hypothalamus and brain stem in WT mE7M-B6 mice and that this desensitization was lost in truncated mutant mE7M-B6 mice.

mE7M-129 WT mice did not develop tolerance to morphine, so it was not surprising that morphine treatment failed to significantly alter the maximal stimulation in any brain regions (Table 5). However, we observed elevated stimulation levels in saline-treated mE7M-129 homozygous mice compared with WT controls in both the hypothalamus and brain stem (Table 5). Similar elevation was seen in the PAG of mE7M-B6 homozygous mice (Table 5).

We did not examine the mE3M and mE4M mouse models because the decreased receptor expression and [35S]GTPγS binding in the naïve truncate mutant mice (Tables 1 and 2) might have made interpretation difficult.

Effect of the truncation of exon 7–associated C-terminal tails on ERK1/2 activation in brain regions of mice chronically treated with morphine. ERK1/2 activation has been linked to receptor desensitization through arrestin-dependent and/or arrestin-independent mechanisms, which may contribute to morphine tolerance (42, 46). We investigated ERK activation with Western blots from the same 6 brain regions in mE7M-B6 mice after 5 days of morphine or saline treatment. While chronic morphine failed to alter ERK phosphorylation levels in most regions, including the striatum, PAG, hypothalamus, and brain stem in either WT control or homozygous mice (Supplemental Figure 9), it increased ERK1/2 phosphorylation in the thalamus of WT B6 control mice, raising questions regarding the role of ERK activation in the thalamus in morphine tolerance and its relationship with receptor desensitization in the hypothalamus and brain stem. Similarly to WT B6 controls, mE7M-B6 homozygous mice showed increased ERK activation in the thalamus after morphine treatment, with no changes in other regions (Supplemental Figure 9), suggesting it is unlikely that exon 7–associated C-terminal sequences are involved in the ERK1/2 activation.

In vitro characterization of exon 7–associated 7-TM variants. In view of the potential role of exon 7–containing variants in morphine action, we compared the exon 7–associated 7-TM variants mMOR-1 and mMOR-1O with the exon 4–associated mMOR-1 in stably transfected CHO cells. First, we examined signaling bias. Using appropriately engineered stable CHO cell lines, we examined mu agonist–induced β-arrestin recruitment using a PathHunter β-arrestin 2 assay (DiscoverX) and G protein activation by [35S]GTPγS binding. Overall, the mu agonists morphine, endomorphin 1, and fentanyl stimulated [35S]GTPγS binding with full efficacy relative to DAMGO, with the exception of mMOR-1O, in which the maximal stimulation by morphine was significantly reduced (Figure 5A and Supplemental Table 5). We observed marked potency differences among the variants. For example, DAMGO was most potent against mMOR-1, with an EC50 of 17 nM, compared with 195 and 157 nM against mMOR-1C and mMOR-1O, respectively. Endomorphin 1 and fentanyl also were far less potent against the exon 7–associated variants. The compounds also stimulated β-arrestin 2 recruitment with varying efficacies relative to DAMGO. Although morphine was the least effective against all 3 variants, it stimulated β-arrestin 2 binding more efficaciously in mMOR-1O than in mMOR-1 and mMOR-1C, with no significant changes in potencies. Endomorphin 1 also had higher Emax (maximum response achievable) values against mMOR-1O than mMOR-1, with no difference in their EC50 values. Both DAMGO and endomorphin 1 had higher EC50 values in mMOR-1C than in mMOR-1 and mMOR-1O.

Using those 2 assays, we calculated the bias factors of the drugs among the variants using the Black and Leff operational model (refs. 47, 48, and Figure 5B). Compared with the bias of DAMGO against mMOR-1, which was normalized to a value of 1, we observed marked variability among the drugs and among the variants, with the greatest difference being a bias factor of −44.3 for fentanyl against mMOR-1O (Figure 5B). When each drug was normalized to mMOR-1 (Figure 5B), they all displayed a great-
Finally, we compared the sodium sensitivity of [³H]DAMGO binding in the 3 CHO cell lines. Sodium acts allosterically to stabilize receptors in an antagonist conformation, which has lower affinity for agonist binding (50–52). Sodium ions lowered [³H]DAMGO binding in a dose-dependent manner for all 3 receptors (Supplemental Figure 10B). However, mMOR-1O stood apart from the other 2, displaying a decreased sensitivity to the ion. This was quite interesting in that the sodium site is located within the transmembrane region of the receptor (51), which is common to all 3 variants. These studies revealed a general pattern in vitro of differences between exon 7-associated and exon 4-associated 7-TM C-terminal variants.

Discussion

The current study used 3 mutant mouse models, mE3M, mE4M, and mE7M, on 2 inbred strain backgrounds to investigate the importance of Oprim1′ splicing and the distal C-terminal tails of mu opioid receptors in mediating complex morphine actions (see summary in Table 6). These truncation models did not substantially affect morphine analgesia, but differentially altered morphine-induced tolerance, physical dependence, reward behavior, and locomotor activity profiles. The loss of morphine-induced receptor desensitization in the hypothalamus and brain stem of mE7M-B6 mutant mice further implicated the involvement of exon 7-associated variants in morphine-induced receptor desensitization and tolerance. The similarity in several morphine-induced behaviors and receptor desensitization between mE7M-B6 homozygous and β-arrestin 2 KO mice suggests a physical and functional association of exon 7-associated C-terminal tails with β-arrestin 2, a hypothesis further supported by our in vitro data showing that several mu agonists displayed greater β-arrestin bias against exon 7-associated variants than against the exon 4-associated mMOR-1.

Loss of the exon 4 epitope reduced both [³H]naloxone receptor binding and maximal mu agonist–stimulated [³H]GTPγS binding levels despite the lack of significant changes in mRNA levels. The 12 amino acids encoded by exon 4 contain a MOR-1–derived recycling sequence (MRS) that facilitates recycling of internalized MOR-1 to the plasma membrane following DAMGO treatment in HEK293 cells (29). Loss of the MRS enhanced agonist-induced receptor trafficking to lysosomes for degradation. The loss of the MRS in both mE3M and mE4M homozygous mice corresponds with our observed decreases in receptor sites and [³H]GTPγS stimulation and raises an interesting question of whether the MRS has a similar role under endogenous opioid tone in vivo.
Morphine (M) tolerance was induced in mE7M-B6 and mE7M-129 mouse models by the same paradigm used in Figure 1A. A control group injected with saline (S) was also included for both WT and homozygous mice. [35S]GTPγS-binding assay was performed using membranes prepared from 6 regions that were dissected after the last morphine injection on day 5, as described in Supplemental Methods. Percentage of maximal stimulation (over basal level) and EC50 values were calculated by nonlinear regression analysis (Prism). AResults are last morphine injection on day 5, as described in Supplemental Methods. Percentage of maximal stimulation in Figure 1A control group injected with saline (S) was also included for both WT and homozygous mice.

Table 5. Morphine-stimulated [35S]GTPγS binding in membranes from brain regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Mouse</th>
<th>mE7M-B6</th>
<th>mE7M-129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striatum</td>
<td>WT-Saline</td>
<td>38 ± 2</td>
<td>0.3 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>WT-morphine</td>
<td>30 ± 5</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut-Saline</td>
<td>49 ± 4*</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut-morphine</td>
<td>37 ± 3*</td>
<td>0.3 ± 0.0</td>
</tr>
<tr>
<td>Nucleus accumbens</td>
<td>WT-Saline</td>
<td>77 ± 2</td>
<td>0.5 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>WT-morphine</td>
<td>77 ± 5</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Mut-Saline</td>
<td>73 ± 7</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Mut-morphine</td>
<td>83 ± 10</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>Thalamus</td>
<td>WT-Saline</td>
<td>61 ± 5</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>WT-morphine</td>
<td>49 ± 2</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut-Saline</td>
<td>53 ± 3</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut-morphine</td>
<td>57 ± 7</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>WT-Saline</td>
<td>61 ± 2*</td>
<td>0.3 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>WT-morphine</td>
<td>43 ± 5</td>
<td>0.2 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>Mut-Saline</td>
<td>62 ± 3*</td>
<td>0.2 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>Mut-morphine</td>
<td>72 ± 10</td>
<td>0.2 ± 0.0</td>
</tr>
<tr>
<td>PAG</td>
<td>WT-Saline</td>
<td>42 ± 3</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>WT-morphine</td>
<td>49 ± 3</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Mut-Saline</td>
<td>59 ± 4*</td>
<td>0.3 ± 0.1</td>
</tr>
</tbody>
</table>
| | Mut-morphine | 54 ± 1 | 0.4 ± 0.2| 24 ± 4 | 0.6 ± 0.2
| Brainstem | WT-Saline | 50 ± 3* | 0.4 ± 0.2| 45 ± 2 | 0.1 ± 0.0|
| | WT-morphine | 51 ± 7 | 0.3 ± 0.1| 62 ± 2 | 0.1 ± 0.0|
| | Mut-Saline | 50 ± 6* | 0.3 ± 0.1| 71 ± 7* | 0.3 ± 0.1|
| | Mut-morphine | 48 ± 1* | 0.3 ± 0.1| 71 ± 7* | 0.2 ± 0.0|

Morphine-stimulated [35S]GTPγS binding in membranes from brain regions

Distal C-terminal sequences markedly affected morphine tolerance, with opposite effects seen between exon 4– and exon 7–associated C-terminal truncation models. This was particularly interesting in view of the lack in change of morphine analgesia among the truncation models, despite receptor binding decreases of 30% to 50% in mE4M and mE3M models. Maintaining analgesic activity with reduced receptor expression has been reported previously in mu receptor KO models in which loss of half the receptor in the heterozygotes failed to change receptor binding (42). These studies raised questions regarding regional expression and function of these proteins as well as regional processing of these cellular events. The prevention of receptor desensitization in both the brain stem and hypothalamus by the exon 7–associated C-terminal truncation in B6 mice suggests a contribution of the exon 7–associated C-terminal variants to morphine-induced receptor desensitization and tolerance. Also, the WT control mE7M-129 mice failed to show the studies from morphine-tolerant mouse brain stem (56). In our study, morphine-tolerant control WT mE7M-B6 mice exhibited reduced morphine-stimulated G protein coupling in the brain stem following chronic morphine treatment, consistent with previous observations. Our study also revealed receptor desensitization in the hypothalamus. Mu opioid receptor agonist–induced desensitization involves many proteins in various cellular processes, such as receptor phosphorylation, β-arrestin 2 binding, and internalization (42). These studies raised questions regarding regional expression and function of these proteins as well as regional processing of these cellular events. The prevention of receptor desensitization in both the brain stem and hypothalamus by the exon 7–associated C-terminal truncation in B6 mice suggests a contribution of the exon 7–associated C-terminal variants to morphine-induced receptor desensitization and tolerance. Also, the WT control mE7M-129 mice failed to show the...
The Journal of Clinical Investigation

RESEARCH ARTICLE

![Diagram](http://www.jci.org)

Figure 4. Effect of the truncation of exon 7-encoded C-terminal tails on morphine-induced receptor desensitization by morphine-stimulated [35S]GTPγS binding in the hypothalamus and brain stem. Morphine tolerance was induced in mE7M-B6 and mE7M-129 mouse models by the same paradigms used for Figure 1. A control group injected with saline was also included for both WT and homozygous mice. [35S]GTPγS-binding assay was performed using membranes prepared from 6 regions that were dissected after the last morphine injection on day 5, as described in Supplemental Methods. Percentage of maximal stimulation (over basal level) and EC50 values were calculated by nonlinear regression analysis (Prism). Only percentage of maximal stimulation in the hypothalamus and brain stem in mE7M-B6 and mE7M-129 mice are shown. The EC50 and percentage of maximal stimulation of all the regions among WT and homozygous mice treated with saline or morphine are listed in Table 5 and dose-response curves in Supplemental Figure 8. The results are shown as mean ± SEM of percentage of maximal stimulation values determined from 3 to 4 independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001, compared with WT treated with morphine. †P < 0.05, compared with WT treated with saline, 2-way ANOVA with Bonferroni’s post hoc test. Mut, homozygous mice.

Discussion

Receptor desensitization in any of the brain regions, including the brain stem and hypothalamus, consistent with the lack of tolerance in these animals in this tolerance paradigm.

Intriguingly, several morphine-induced responses in a β-arrestin 2 KO mouse were similar to those in a mE7M-B6 homozygous mouse (Table 6), including reduced morphine tolerance (56, 57), loss of the receptor desensitization in the brain stem (56), no alteration of physical dependence (56, 58) and GI transit inhibition in the small intestine (59), and reduced locomotor activity (60). However, β-arrestin 2 KO mice also showed some differences from mE7M-B6 homozygous mice, such as enhanced morphine analgesia (61) and CPP (ref. 60 and Table 6). Nevertheless, these similar responses in both models are consistent with a physical and functional interaction of the exon 7-associated C-terminal tails with β-arrestin 2 in producing morphine-induced receptor desensitization in specific regions and morphine tolerance. Our in vitro observations of greater β-arrestin 2 bias with exon 7-associated variants, particularly mMOR-1O, further support this possibility.

Mu agonist-induced receptor phosphorylation and subsequent β-arrestin binding have been postulated as one mechanism of receptor desensitization and mu opioid tolerance (42–44). For example, serine 375 (S375) of MOR-1 in exon 3-encoded C-terminal sequences shared by all C-terminal variants can be phosphorylated mainly by GRK5 (62), contributing to β-arrestin recruitment (63). A S375A mutant mouse displayed reduced tolerance to fentanyl, but not to morphine (64). Phosphorylation of threonine 394 (T394) in the exon 4-encoded C-terminal sequence was involved in mu agonist-induced receptor internalization and desensitization (65, 66). A T394A mutant mouse showed attenuated acute morphine tolerance and increased heroin-taking behavior (67). A number of phosphorylation sites for various protein kinases, such as GPCR kinases (GRKs), are predicted in exon 7-associated C-terminal tails (Supplemental Figure 11 and ref. 68), raising the possibility of enhanced phosphorylation and increased β-arrestin recruitment in these variants. The exon 7-encoded C-terminal sequences also contain a consensus β-arrestin 2 binding motif, PxPxxE or PxxPxE (Supplemental Figure 11), that interacts with positively charged residues at the N terminus of β-arrestin 2, based on homology modeling with the recent crystal structure of the rhodopsin-arrestin complex as a template (ref. 69 and H. Eric Xu, personal communication). Although only a prediction, it will be interesting to see how this motif influences β-arrestin 2 binding and receptor signaling as well as morphine actions in vivo.

The exon 7 truncation also selectively and markedly reduced morphine CPP in the B6 mice, while the other 2 truncation models did not. Conversely, the exon 7-associated C-terminal tails did not affect naloxone-precipitated jumping in B6 mice, while the other 2 B6 truncation models did. However, some behaviors were similarly altered by the truncations, such as the lowered locomotor activity in B6 mice. Together, the divergent effects seen in these mutant mice among various morphine actions strongly support the functional significance of 3’ alternative splicing of the Oprml1 gene and illustrate selective roles for specific C-terminal tails in various actions.

While the models dissociate the actions of different groups of C-terminal splice variants, assigning a specific variant is not possible due to concurrent 5’ alternative splicing, which yields multiple variants with identical C-terminal sequences (Supplemental Figure 1 and Supplemental Figure 2B). For example, the exon 4 epitope is contained within a number of 7TM variants (mMOR-1, mMOR-1H, mMOR-1i, and mMOR-1J) as well as a 6TM variant (mMOR-1G). The exon 7-encoded sequence is present in 7TM variants (mMOR-1C, mMOR-1O, and mMOR-1U) as well as the 6TM variant mMOR-1M. While the far greater affinity of morphine for 7TM receptors in binding assay and the retention of morphine analgesia in an E11-KO mouse lacking 6TM variants (34, 70–73) implies that morphine is more likely to interact with 7TM receptors, our recent studies revealed a decrease in mor-
The involvement of exon 7-associated variants in morphine tolerance, reward, and locomotor activity raises the possibility that selectively targeting them may provide potential therapeutic advantages, as shown by our ANT-vMO study. This oligo markedly reduced exon 3/exon 7 splicing and expression of exon 7-associated variants and attenuated morphine tolerance without affecting morphine dependence, mimicking the effect of truncation of exon 7-associated C-terminal tails in mE7M-B6 homozygous mice. Antisense morpholino oligos have been successfully used to correct aberrant splicing in a growing number of animal models of human diseases, such as spinal muscular atrophy (74–76), Duchenne muscular dystrophy (77, 78), and β-thalassemia (79, 80). Our results provide another example where an in vivo antisense morpholino approach might be of clinical value one day.

C-terminal splice variants are not limited to the OPRM1 gene. Genomic database analysis suggests that as many as 12% of human GPCR genes (excluding olfactory receptor genes) generate alternatively spliced intracellular C-terminal tail variants (our unpublished observation). However, the expression and function of the majority of these C-terminal variants remain unknown.

Methods

Detailed experimental procedures for generation of gene-targeted mutant mice, RT-qPCR, opioid receptor binding, [35S]GTPγS binding, receptor desensitization study, Western blot, locomotor activity, GI motility assay, and catalepsy are described in the Supplemental Methods.
Table 6. Comparison of behavioral and biochemical studies in targeted mice

<table>
<thead>
<tr>
<th>Strain/morphine</th>
<th>mE3M Truncation of all C termini</th>
<th>mE4M Truncation of exon 4–encoded C termini</th>
<th>mE7M Truncation of exon 7–encoded C termini</th>
<th>β-arrestin 2 KOa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesia</td>
<td>129</td>
<td>129</td>
<td>129</td>
<td>Enhanced (61)b</td>
</tr>
<tr>
<td>Locomotor activity</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Reduced (65)c</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Developed</td>
<td>Enhanced</td>
<td>Developed</td>
<td>Reduced (66)d</td>
</tr>
<tr>
<td>Physical dependence</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Reduced (56, 57)e</td>
</tr>
<tr>
<td>Reward (CPP)</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Reduced (60)c</td>
</tr>
<tr>
<td>Inhibition of GI transit</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>No change (59)f</td>
</tr>
<tr>
<td>Catalepsy</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>No change (59)f</td>
</tr>
<tr>
<td>Receptor desensitization in hypothalamus</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Lost (56)g</td>
</tr>
<tr>
<td>Receptor desensitization in brain stem</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Lost (56)g</td>
</tr>
</tbody>
</table>

aAll changes are compared with respective WT controls. bData from β-arrestin 2 KO mouse model were from indicated literature. cDivergent results seen in mE7M–B6 homozygous mice. dSimilar results seen in mE7M–B6 homozygous mice. eThe physical dependence data in ref. 56 were determined using morphine pellets. There was no change in the physical dependence in β-arrestin 2 KO mice. In ref. 58, when administered using osmotic pump, 2 of 3 doses (12 and 48 mg/kg/d) of morphine did not induce significant reduction of naloxone-precipitated withdrawal (jumps and global score), but 1 dose (24 mg/kg/d) did, in β-arrestin 2 KO mice. fMorphine-induced receptor desensitization was assessed by morphine-stimulated (mE7M–B6) (Figure 4) or DAMGO-stimulated (β-arrestin 2 KO) [35S]GTPγS binding (56).

Animals. B6 (stock 000664) and B6 albino (stock 000058) mice were obtained from Jackson Laboratory, 129 mice from Taconic Biosciences, and CD-1 mice from Charles River Laboratories. Adult (8 to 16 weeks old) male mice were used in all experiments. All mice were housed in groups of 5, maintained on a 12-hour light/12-hour dark cycle, and given ad libitum access to food and water.

Generation of gene-targeting mutant mice. Although a traditional KO approach that deletes each individual exon can be used, it may alter the splicing pattern or induce compensatory effects, making the interpretation of phenotypes more difficult. To avoid such a problem, we used a strategy that eliminates the C-terminal tails at the translational level by introducing a stop codon at the end of Oprm1 exon 3 (mE3M) or the beginning of exon 4 (mE4M) or exon 7 (mE7M) without deletion of any individual exon (see details in Supplemental Methods and Supplemental Table 6).

Morphine analgesia. Analgesia was determined 30 minutes after s.c. injection using a radiant-heat tail-flick assay, with a maximal latency of 10 seconds to minimize tissue damage, as previously described (21, 70). Results were calculated as the percentage of maximum possible effect (% MPE) as follows: [latency after drug – baseline latency]/(10 – baseline latency) × 100. Morphine doses used in cumulative dose-response studies were 1, 2, 4, 8, 16, or 32 mg/kg. ED50, values were determined using nonlinear regression analysis (GraphPad Prism 6).

Morphine tolerance and physical dependence studies. Tolerance in the targeted mice on a B6 background and CD-1 mice was induced by twice-daily injections with morphine (10 mg/kg, s.c.) for 5 days. Tolerance in the targeted mice on a 129 background was induced by twice-daily injections with escalating doses of morphine (s.c., day 1, 10 mg/kg; days 2 and 3, 20 mg/kg; days 4 and 5, 40 mg/kg). Morphine analgesia was examined on days 1, 3, and 5. Morphine dependence was determined on day 5 with naloxone (s.c., 1 mg/kg for mice on a B6 background and 30 mg/kg for mice on 129 backgrounds and CD-1 mice) injection 3 hours after the last morphine treatment to precipitate withdrawal. The number of jumps within 15 minutes immediately following the naloxone injection was used for the measurement of withdrawal.

In vivo vivo–morpholino oligo study. Morpholino oligos bind to RNA and sterically block access of splicing factors without triggering RNAse H-mediated mRNA degradation, providing advantages in specificity, stability, and low toxicity. The vivo–morpholino oligo is a modified morpholino oligo covalently linked with an octa-guanidine dendrimer that greatly improves delivery efficiency in vivo. CD-1 mice were i.c.v. administered daily for 4 days (days 1–4) with 10 μg of an ANT-vMO (5′-AGGTTTGGCTGTACAAGAAAAAGA-3′, Gene Tools) targeting intron/exon 7 junction and MIS-vMO (5′-GAGTTTGCTGCTGCTGAGAAGAAGA-3′) and PBS. Morphine injection (10 mg/kg, s.c. twice daily) was started on the second day of the vivo–morpholino oligo injection for 5 days (days 2–6) to induce tolerance. Morphine analgesia was assessed on days 1, 4, and 6. Morphine dependence was evaluated on day 6 with naloxone (30 mg/kg) as described above.

CPP. CPP was performed using a 3-chamber apparatus (Med Associates) with a 6-day paradigm. On day 1, mice were placed in the central chamber for 1 minute of habituation with the sliding doors closed, followed by a 20-minute preconditioning period of free exploration in the 3 chambers. Time spent in each chamber was recorded. On days 2 to 5, mice were i.p. injected with saline (morning) or morphine (10 mg/kg, afternoon) and confined to either the black or the white chamber for 20 minutes. On day 6, mice were placed for a 1-minute habituation in the central chamber, followed by a 20-minute free exploration in the 3 chambers. Time spent in each chamber was recorded. Preference was defined as difference between the times spent in the morphine-paired side of the chamber on the test day (day 6) compared with the preconditioning day (day 1).

β-Arrestin 2 recruitment assay. β-arrestin 2 recruitment was determined with the PathHunter enzyme complementation assay (DiscoverX) using engineered CHO cells stably transfected with mMOR-1, mMOR-IC, and mMOR-IO constructs in a Prolink vector (DiscoverX). Cells were plated at a density of 2500 cells/well in a 384-well plate as described in the manufacturer’s protocol. The following day, cells were treated with the indicated compound with various concentrations in triplicate for 90 minutes at 37°C, followed by incubation with

http://www.jci.org on August 24, 2017. https://doi.org/10.1172/JCI88760

RESEARCH ARTICLE

The Journal of Clinical Investigation
PathHunter detection reagents for 60 minutes. Chemiluminescence was measured with an Infinite M1000 Pro plate Reader (Tecan).

Statistics. All mice were randomized and assigned to groups. Some, but not all, experiments were performed under blinded conditions. All statistical analysis was carried out using GraphPad Prism 6. A 1-way ANOVA or 2-way ANOVA was performed with post hoc Bonferroni’s multiple comparisons test as described in the figure legends. Data represented the mean ± SEM of at least 3 independent experiments. Statistical significance was set at P < 0.05.

Study approval. All animal studies were approved by the IACUC of Memorial Sloan Kettering Cancer Center.

Author contributions
LC, AM Rajadhyaksha, GWP, and YXP designed experiments. JX, ZL, VPLR, AN, AH, MX, TGB, WFH, GCR, RCR, A Martinez-Rivera, AM Rajadhyaksha, and YXP performed experiments. LC, AM Rajadhyaksha, DLB, and YXP contributed new reagents/analytic tools. LX, ZL, VPLR, AN, AH, TGB, GCR, RCR, A Martinez-Rivera, AM Rajadhyaksha, and YXP analyzed data. JX, ZL, AN, GWP, and YXP wrote the manuscript.

Acknowledgments
This work was supported by the NIH (DA013997 and DA029244 to YXP, DA06241 and DA07242 to GWP, DA029122 to AM Rajadhyaksha, and DA029122S2 to A Martinez-Rivera, and a core grant from the National Cancer Institute to Memorial Sloan Kettering Cancer Center, CA08748). We thank Chingwen Yang (Gene Targeting Resource Center, The Rockefeller University) for providing the DTA plasmid and generating targeted ES cells, Connie Zhao (Genomics Resource Center, The Rockefeller University) for help genotyping SNPs using a Mouse Medium Density Linkage SNP panel (Illumina) in speed congenic breeding, Margaret Leversha (Molecular Cytogenetics Core, Memorial Sloan Kettering Cancer Center) for help karyotyping ES clones, Willie Mark (Mouse Genetics Core, Memorial Sloan Kettering Cancer Center) for help generating targeted mice, and DiscoveRx Corporation for assisting β-arrestin 2 recruitment assay.

Address correspondence to: Ying-Xian Pan, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, New York 10065, USA. Phone: 646.888.2167; E-mail: pany@mskcc.org.

The Journal of Clinical Investigation

for common genetic mechanisms in acute and chronic morphine physical dependence. Neuro-
science. 2002;115(2):463–469.
dependence in ten inbred mouse strains: evidence of
genetic correlation with morphine dependence. Phar-
macol Biochem Behav. 2008;90(3):447–452.
33. Hall FS, et al. Congenic C57BL/6 mu opioid
receptor (MOR) knockout mice: baseline and opi-
ate effects. Genes Brain Behav. 2003;2(2):114–121.
34. Schuller AG, et al. Retention of heroin and mor-
phine-6 beta-gluconuridase analogs in a new line of
mice lacking exon 1 of MOR-1. Nat Neurosci.
35. Kolesnikov Y, Jain S, Wilson R, Pasternak GW. Lack of
morphine and enkephalin tolerance in 129/2Ev mice: evidence for a NMDA receptor defect.
36. Dockstader CL, Van der Kooy D. Mouse strain
differences in opiate reward learning are explained by differences in anxiety, not reward or
37. Murphy NP, Lam HA, Maidment NT. A comparison of
morphine-induced locomotor activity and meso-
limbic dopamine release in C57BL6, 129Sv and
38. Creese I, Snyder SH. Receptor binding and pharma-
cological activity of opioids in the guinea-pig intest-
39. Rossi GC, Pan YX, Brown GP, Pasternak GW. Antisense
mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel mor-
phine-6 beta-gluconuridase receptor. FEBS Lett.
40. VanderWende C, Spoelken MT. Morphine-
depicted catechol in mice. Modification by drugs acting on neurotransmitter systems. Neurophar-
41. Zarrindast MR, Samadi P, Haeir-Rohani A, Moaz-
ni N, Shafizadeh M. Nicotine potentiation of
morphine-induced catechol in mice. Pharmacol
43. Raehal KM, Bohn LM. The role of beta-arrestin2 in the
severity of opioid tolerance and physical dependence induced by differing opioid pain ther-
44. Raehal KM, Walker JK, Bohn LM. Morphine side
45. Bohn LM, et al. Enhanced rewarding prop-
erties of morphine, but not cocaine, in
46. Bohn LM, LeKowitz RJ, Gainetdinov RR, Pep-
pel K, Caron MG, Lin FT. Enhanced morphine
47. Mann A, Illing S, Mess E, Schulz S. Different
mechanisms of homologous and heterologous
mu-opioid receptor phosphorylation. Br J Phar-
48. Lut J, et al. Quantitative encoding of the effect of
a partial agonist on individual opioid recep-
tors by multisite phosphorylation and threshold
2011;31(39):13890–13896.
50. Deng HB, et al. Role for the C-terminus in
agonist-induced mu opioid receptor phos-
phorylation and desensitization. Biochemistry.
51. Wolf R, et al. Replacement of threonine 394 by
alanine facilitates internalization and resensitiza-
tion of the rat mu opioid receptor. Mol Pharmacol.
52. Wang XF, et al. T394A mutation at the mu opioid
receptor blocks opioid tolerance and increases
vulnerability to heroin self-administration in
X. GPS: a comprehensive web server for phos-
phorylation sites prediction. Nucleic Acids Res.
bound to arrestin from foscarnet X-ray laser.
55. Pan YX, Xu J, Xu R, Rossi GC, Maltounis JE, Pas-
ternak GW. Involvement of exon 11-associated
variants of the mu opioid receptor MOR-1 in her-
analgesia, reward effect and withdrawal symp-
toms in mice lacking the mu-opioid-receptor gene.
57. Sora I, et al. Opiate receptor knockout mice
define mu receptor roles in endogenous nocicep-
tive responses and morphine-induced analgesia.
58. Loh HH, Liu HC, Cavalli A, Yang W, Chen
YF, Wei LN. Mu opioid receptor knockout in
mice: effects on ligand-induced analgesia and
59. Zhou H, et al. A novel morphinoline oligomer tar-
geting ISS-N1 improves rescue of severe spinal
muscular atrophy transgenic mice. Hum Gene
60. Sidrck JJ, Jiang S, Choi SJ, Knuth ST, Morcos PA.
An octaguanidine-morpholino oligo conjugate
improves muscle function of mdx mice. Muscle
61. Zhou H, Meng J, Marrosu E, Janghra N, Morgan
J, Muntoni F. Repeated low doses of morpholino
antisense oligomer: an intermediate mouse
model of spinal muscular atrophy to explore the
2015;24(22):6265–6277.
of dystrophin expression with vivo-morpholino-
mediated multiple exon skipping in dystrophic
63. Douglas AG, Wood MJ. Splicing therapy for
64. Suwanmanee T, et al. Restoration of human IVS2-654
thalassemic erythroid cells by
antisense oligomer: an intermediate mouse
model of spinal muscular atrophy to explore the
2015;24(22):6265–6277.
dependence in ten inbred mouse strains: evidence of
genetic correlation with morphine dependence. Phar-
macol Biochem Behav. 2008;90(3):447–452.