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Introduction
Kaposi sarcoma (KS) is the most common cancer in individuals 
living with HIV/AIDS today (1, 2). While the introduction of effec-
tive HIV therapy was concurrent with a decline in the incidence of 
KS in the United States, KS incidence has stabilized and remained 
essentially level since 2000. In Africa, where KSHV and HIV infec-
tions are highly prevalent, KS is among the most common cancer 
type in men overall. In some sub-Saharan countries, KS is more 
prevalent than prostate cancer is in the US (3). As the expected 
lifespan of individuals living with HIV/AIDS increases, we foresee 
an increase in all cancers in this population, including KS.

Kaposi sarcoma–associated herpesvirus (KSHV) is necessary 
for KS development. KSHV DNA is found in all KS lesions (4, 5). KS 
prevalence follows KSHV seroprevalence, and in most cases fulmi-
nant KS is accompanied and preceded by a rise in KSHV viral load 
in blood. In addition to KS, KSHV is also the etiologic agent of the 
plasmablastic variant of multicentric Castleman’s disease (MCD) 
(6) and primary effusion lymphoma (PEL) (7, 8). Moreover, KSHV 
is the causative agent of KS-immune reconstitution syndrome 
(KS-IRIS) (9, 10) and KSHV-inflammatory cytokine syndrome 
(KICS) (11). However, not all KSHV infections lead to KSHV-asso-
ciated conditions. The majority of primary KSHV infections have 
no clinical symptoms and, as with other human oncogenic viruses, 
cancer emerges only after decades of dormancy. KSHV can be 
transmitted via asymptomatic oral shedding as well as through 
bodily fluids (12–14). KSHV can infect many different types of cells 
including endothelial cells, B lymphocytes, monocytes, dendritic 
cells (DCs), and epithelial cells. KSHV provides a growth advan-
tage to infected endothelial cells. The virus consistently immor-
talizes, but rarely transforms, primary cells in culture (15–19). It is 
only under special circumstances and perhaps upon infection of 
rare progenitor cells with stem cell properties that the interplay 
between virus and host leads to a fully transformed state.

Why is the human immune system so powerful in suppress-
ing disease, yet can never eliminate this pathogen? Like all her-
pesviruses, KSHV establishes lifelong infection in the host and 
molecular latency in cells in culture. KS is primarily the conse-
quence of systemic viral reactivation from a latent reservoir, most 
likely a lymph node–resident B cell (20–23). Prior to the emer-
gence of HIV, endemic KS in sub-Saharan Africa was a disease of 
both children and adults, and classic KS was a disease of elderly 
men in the Mediterranean region. Today, KS also develops with 
higher frequency in HIV-infected individuals (HIV-associated 
KS) compared with HIV-negative individuals, as well as in solid 
organ transplant recipients (transplant KS). Thus, it appears that 
KS develops in response to severe T cell depletion or inactivation. 
Infant, aging-, chemical-, or HIV-induced immune deficiency is 
an essential cofactor for the development of KS.

Primary infection and the innate immune 
response to KSHV
KSHV is thought to enter cells predominantly through the endo-
cytic pathway. Viral attachment involves several different recep-
tor binding proteins on the virion. KSHV can infect multiple cell 
types, including B cells, endothelial cells, monocytes, and DCs, 
and hence uses multiple viral receptors to enter the host cell. 
One such receptor is the gB glycoprotein, which contains an inte-
grin-binding RGD (Arg-Gly-Asp) motif that plays a role in virion 
binding and entry of endothelial cells (24–26). Activated B cells, 
macrophages, and DCs express a DC-specific ICAM-3-grabbing 
non-integrin (DC-SIGN; CD209) that facilitates KSHV infection 
in these cell types (27, 28). The cysteine transporter (xCT) can also 
serve as a receptor for the virus (29).

KSHV is thought to enter cells predominantly through the 
endocytic pathway (30–32). During its entry into the host cell, the 
virus encounters multiple innate immune sensors that activate 
an antiviral response. It is likely that the activation of such innate 
immune responses during primary infection induces the virus to 
enter molecular latency, which is a more quiescent and less immu-
nogenic phase of the lifecycle.

Kaposi sarcoma–associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying 
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production and suppresses viral gene expres-
sion following de novo infection with KSHV 
as well as during viral reactivation (39, 40).

NLRs. NLR family members can form 
inflammasomes, a complex comprised of an 
NLR protein, ASC, and pro-caspase-1. NLRs 
sense PAMPs, and activation of the NLR 
inflammasomes results in cleavage and 
production of active IL-1β and IL-18, which 
are proinflammatory cytokines. Primary 
infection with KSHV activates NLRP1 and 
NLRP3 (41, 42) and potentially other NLRs.

ALRs. Like NLRs, ALR family mem-
bers can also form inflammasomes to acti-
vate proinflammatory cytokine signaling. 
Primary infection with KSHV has been 
shown to activate the ALR family member 
interferon gamma–inducible protein 16 
(IFI16) (43, 44). It was additionally report-
ed that IFI16 can detect KSHV in latently 
infected cells (43).

cGAS-STING. Cyclic GMP-AMP 
(cGAMP) synthase (cGAS) and STING 
are members of the cytosolic DNA-sens-
ing pathway. This cGAS-STING pathway 
appears to sense KSHV during both primary 
infection and reactivation from latency in 
multiple cell types (45–47).

There seems to exist a delicate equilib-
rium between the virus and host response 
to infection. Although innate immune 
activation might help KSHV enter a latent, 
quiescent phase inside the infected cell and 
induce expansion of latently infected cells, 
a high degree of innate immune response 

facilitates killing of the infected cell and ultimately prevents the 
establishment of latency. To counter the host response to viral 
infection and reactivation, KSHV encodes many viral genes that 
blunt innate immune signaling pathways. Some of these viral 
products are summarized in Figure 1 and are described below.

Viral interferon regulatory factors. KSHV encodes four viral 
interferon regulatory factors (vIRFs), three of which ablate cellu-
lar IRF signaling and inhibit the production of type I IFNs, includ-
ing IFN-α and IFN-β (reviewed in ref. 48). KSHV vIRFs have been 
shown to inhibit IFN production that lies downstream of TLR3 
activation (49), MAVS activation (50), and cGAS-STING activa-
tion (45). KSHV vIRF1 also inhibits the function of IFN-induced 
genes such as ISG15 (51) and the transcription of TLR4 (37).

Complement regulatory proteins. KSHV encodes the comple-
ment regulatory protein KCP, which is encoded by ORF4. KCP is 
part of the virion and functions as a cofactor for factor I–mediated 
cleavage of C3b and C4b, the complement system’s opsonizing 
factors (52, 53). KSHV has also been reported to exploit the host 
complement system to promote viral persistent infection (54).

Tegument proteins. Tegument proteins are a characteristic fea-
ture of all herpesviruses, and a large number of them are depos-
ited into the cytoplasm following virion fusion and capsid release. 

Cells infected with viruses such as KSHV trigger an innate 
immune response through pattern recognition receptors (PRRs) 
that recognize pathogen-associated molecular patterns (PAMPs) 
and lead to the production of interferon and proinflammatory cyto-
kines. It is important to note that each cell type expresses its own 
unique set of PRRs. There are many different PRRs including TLRs, 
retinoic acid–like receptors (RLRs), NLRs, absent in melanoma 2 
(AIM2)-like receptors (ALRs), and cytosolic DNA sensors (reviewed 
in ref. 33). Members of the NLR, ALR, and RLR families can form 
inflammasomes that, upon activation, lead to the production of 
IL-1β and IL-18 (34). KSHV infection and/or reactivation activates a 
multitude of PRRs in different cell types; these are described below.

TLRs. Following primary infection, KSHV has been shown to 
activate the RNA sensor TLR3 in monocytes, (35) and the DNA 
sensor TLR9 in plasmacytoid DCs (pDCs) (36). Activation of 
either TLR results in interferon production and upregulation of 
cytokines and chemokines. KSHV also activates TLR4 signaling 
that likely occurs through recognition of the viral glycoproteins gB 
and K8.1 (37). Stimulation of TLR7/8 in PEL cells has been shown 
to lead to reactivation from latency (38).

RLRs. The cytosolic RNA sensor RIG-I and its adaptor protein, 
mitochondrial antiviral signaling protein (MAVS), induces IFN-β 

Figure 1. Innate immune evasion by KSHV. KSHV encodes multiple viral proteins that inhibit innate 
immune pathways. (i) KSHV-mediated activation of TLRs and RIG-I triggers interferon and IFN-β 
production following primary infection. (ii) KSHV Rta, ORF45, and vIRF1, -2, and -3 block cellular IRFs 
from activating interferon-responsive genes. (iii) KSHV LANA, ORF52, and vIRF1 block the cGAS-
STING DNA-sensing pathway. (iv) KSHV ORF63 inhibits NLRP1 and NLRP3 inflammasome activation 
and KCP/ORF4 promotes KSHV pathogenesis by helping the virus to evade complement.
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vMIP-II is an agonist for CCR8, a chemokine receptor that is 
preferentially expressed on polarized Th2 T cells (83). Similarly, 
KSHV vMIP-III serves as an agonist for the cellular chemokine 
receptor CCR4, which is also expressed by Th2 T cells (84). 
Hence, the KSHV vMIPs skew T cell responses towards a Th2-
type lymphocytic response, and this may play a role in subverting 
the host immune response.

Latent KSHV infection and reactivation
KSHV successfully subverts the cellular innate immune response 
to establish a lifelong latent reservoir in the infected host, primar-
ily in B cells. The virus has evolved a number of mechanisms to 
ensure that virally infected B cells outcompete their uninfected 
counterparts, which in the extreme leads to B cell hyperplasia, 
such as MCD (6, 21), or B cell neoplasia, such as PEL (7). These 
include inhibiting apoptosis, overcoming G1 phase arrest, lower-
ing the threshold for B cell receptor (BCR) activation, and provid-
ing ligand-independent progrowth signals. In addition to B cells, 
this virus can also enter CD34 cells, T cells, monocytes, and pDCs 
(36, 85–88), though it is unclear if these cell types contribute to sys-
temic persistence or serve as sentinels to detect infection. Epstein-
Barr virus (EBV) also uses B cells as the predominant latent reser-
voir, as does murine herpesvirus 68 (reviewed in ref. 89); however, 
there are important biological differences between latent infec-
tion in B cells in KSHV and other herpesviruses. EBV is easily 
detected in blood in circulating CD38+ memory B cells, which typi-
cally emerge from the germinal center. In contrast, KSHV is not 
readily detectable in circulating B cells (23), and KSHV viral loads 
in blood are 10- to 100-fold lower than those of EBV or human 
CMV. These observations suggest that tissue-resident B cells are 
the predominant latent reservoir for KSHV.

The deepest insights about the biology of KSHV prior to dis-
ease come from studying the related murine gammaherpesvirus 
68 (MHV-68) and from genetically engineered mouse models. 
In mouse models, it was possible to define B cell tropism through 
functional phenotypes (21). Studies in MHV-68 defined the dis-
tinction between establishment of latency, which drives the size 
of the latent reservoir, and persistence of the latent reservoir, i.e., 
long-term survival of infected cells that are still capable of reacti-
vation (for recent examples see refs. 90–92). We do not know the 
dynamics of latently infected cells in humans and have only just 
begun to decipher the physiological signals that modulate reacti-
vation events and thereby transmission and disease in patients.

Histone deacetylation reactivates KSHV. Vorinostat (also 
known as SAHA) and valproic acid induce reactivation in culture 
and in patients (93–95). Sodium butyrate and phorbol esters reac-
tivate KSHV from PEL, though only a fraction of episomes is com-
petent for reactivation at any given time (96, 97). The majority of 
the KSHV episome is methylated, transcriptionally silent, and dec-
orated with histone markers, indicative of inactive chromatin (96, 
98–101). These markers of methylation are established early in 
infection and maintained by cellular chromatin remodelers, and 
organized by CCCTC-binding factor (a zinc finger protein, also 
known as CTCF) recognition elements (100). During latency, the 
virus actively engages host chromatin modulators (Figure 2). For 
instance, LANA binds to histones H2A and H2B as well as MECP2, 
and to the BET family proteins BRD2 and BRD3 (102–104).

KSHV ORF45 is a tegument protein that blocks IRF7 phosphory-
lation and activation of type I IFN responses (55, 56). ORF64 is 
another conserved herpesviral tegument protein that encodes 
potent deubiquitinating activity (57). ORF64 can reduce TRIM25-
dependent ubiquitination and activation of RIG-I, thereby inhibit-
ing this sensing pathway in KSHV-infected cells (40).

DNA-binding proteins. Although it is primarily a DNA-binding 
protein and transcription factor, KSHV Rta/ORF50 can also induce 
the degradation of innate immune sensors such as IRF7, TLR3, and 
myeloid differentiation factor 88 (MyD88) (58–61). The latency-
associated nuclear antigen (LANA) is another DNA-binding protein 
that inhibits IFN-β induction (62) and the transcription of IFN-γ–
inducible genes (63). Recently, it was shown that cytoplasmic vari-
ants of LANA can inhibit the cGAS-STING DNA-sensing pathway 
by directly binding to cGAS (47). Interestingly, another KSHV open 
reading frame, ORF52, was similarly shown to bind and inhibit 
cGAS enzymatic activity. Infection with an ORF52-deficient virus 
in endothelial cells resulted in increased cGAS signaling (46).

Furthermore, NLRP1 and NLRP3 inflammasome activation is 
inhibited by the tegument protein KSHV ORF63 during de novo 
infection, resulting in reduced IL-1β and IL-18 production. ORF63 
binds to NLRP1 and interferes with the interaction between 
NLRP1 and pro-caspase-1 (42).

In addition to the innate immune responses described above, 
adaptive immune responses also play an important role in KSHV 
pathogenesis. KSHV expresses proteins that affect antigen presen-
tation, B cell targeting, MHC class I display, and neutrophil and 
basophil activation. The KSHV-infected cell presents antigenic 
peptides from the virus in complex with MHC class I to cytotox-
ic T lymphocytes (CTLs) (64–66). Additionally, KSHV-infected 
B cells stimulate activation-induced cytidine deaminase (AID) 
expression and are targeted for elimination by NK cells through 
upregulation of NKG2D ligands (67). KSHV also encodes genes 
that inhibit these immune responses. KSHV K3/MIR1 and K5/
MIR2 are ubiquitin ligases that inhibit MHC class I display (68, 
69). K3/MIR 1 downregulates four HLA allotypes (HLA-A, B, C, 
and E), while K5/MIR2 downregulates HLA-A and HLA-B (70, 71). 
K3 and K5 can also downregulate CD1d (72) and IFN-γ receptor 1 
(IFNGR1) (73). K5 hinders expression of ICAM-1 and the costimu-
latory molecule B7-2 (CD86) (74, 75). It also downregulates the 
NKG2D ligands, MHC class I–related chain A (MICA), MICB, and 
the NKp80 ligand, activation-induced C-type lectin (AICL) (76). 
KSHV vCD200, also known as viral OX2, is a homolog of cellular 
CD200 that is broadly expressed and suppresses neutrophil and 
basophil activation (77) as well as activation of macrophages (78). 
vCD200 can also function as a negative regulator of antigen-spe-
cific T cell responses, including inhibition of IFN-γ production and 
CD107a mobilization (79).

KSHV viral IL-6 (vIL-6) has also been reported to block inter-
feron signaling. IFN-α directly activates viral IL-6 gene expression 
through IFN-inducible sites in the vIL-6 promoter. vIL-6 then sub-
sequently blocks IFN signaling by inhibiting IFN induction of p21 
and also downregulating the IFN receptor–mediated phosphoryla-
tion of TYK2 kinase, thereby dampening JAK-STAT signaling (80).

Finally, KSHV encodes several viral macrophage inflamma-
tory proteins (vMIPs). KSHV vMIP-II inhibits chemotaxis and 
recruitment of monocytes (81) as well as NK cells (82). KSHV 
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length is variable and nonessential for LANA’s nuclear functions, 
as a direct N-to-C terminal domain fusion retains the latency-
supporting functions. Whereas the C-terminal end of LANA binds 
KSHV DNA directly, the N-terminus (and perhaps regions in the 
C-terminus as well) contact cellular chromosome-associated pro-
teins, such as histones H2A and H2B and others (104). The crystal 
structures of the KSHV LANA and MHV-68 LANA DNA-binding 
domains were solved (102, 103, 116, 117). This work identifies the 
DNA contact residues and reveals a folding pattern analogous to 
EBV EBNA1 and HPV E2.

LANA-episome complexes adopt higher-order structures in 
the nucleus of infected cells and appear as a characteristic punctate 
pattern by immunofluorescence (114, 118, 119). Initially considered 
a somewhat underwhelming feature, these “LANA dots” have 
emerged as the diagnostic gold standard to identify KSHV-infected 
cells and to make the diagnosis of KS and PEL (114, 118, 119). The 
number of LANA dots correlates with the number of KSHV plas-
mids in an infected cell. During mitosis, LANA, and by inference 
KSHV plasmids, decorates condensed chromosomes, thereby facil-
itating proper and equal partitioning of the latent viral genomes 
into daughter cells. Loss-of-function LANA mutants in the context 
of the viral genome remain competent for lytic replication, but fail 
to establish and maintain latency in KSHV and the related MHV-
68. Ablation of LANA in PEL is incompatible with growth. Thus, 
LANA can be considered essential for KSHV-associated lympho-
magenesis. However, interpreting genetic experiments for LANA 
is rather complex, since tethering the KSHV plasmids to the host 
genome is not the only function of LANA. LANA also binds a large 
number of cellular proteins to modulate their functions, including 
p53 and many other proteins with specialized functions (120, 121). 
Most recently, cytoplasmic variants of LANA have been described 
(122), and whole-genome screens have highlighted the importance 
of LANA during KSHV primary infection (45, 47).

The KSHV Rta protein (also known as ORF50) is necessary 
and sufficient to initiate KSHV reactivation (105, 106). Rta is a 
potent transcriptional activator that can bind DNA directly or 
through RBP-Jκ (107). Rta reverses and overrides chromatin-
silencing modifications, and deletion of Rta renders MHV-68 
unable to reactivate from latency. In subsequent steps, other viral 
proteins such as K-bZIP augment the action of Rta to ensure robust 
and complete viral replication and virion formation. If Rta is the 
master regulator of reactivation from latency, what regulates Rta 
expression and Rta function? Here the experimental evidence is 
murkier. KSHV LANA and viral miRNAs counteract Rta and rap-
idly drive the virus into latency upon infection of primary endothe-
lial cells, whereas in other environments Rta prevails (108–110). 
It is also worth mentioning that viral reactivation can occur in an 
Rta-independent fashion (111).

More research is needed to identify physiological triggers 
of KSHV reactivation as potential targets of disease prevention. 
These are likely to depend on conserved as well as cell- and micro-
environment-specific signaling pathways (112). KSHV reactiva-
tion can be induced by IFN-γ, but not IFN-α. KSHV reactivation 
is induced by TLR7/8 signaling, and reactivation is enhanced by 
deletion of RIG-I and MAVS (38, 39). In artificially infected Burkitt 
lymphoma B cells (BJAB cells), B cell receptor crosslinking can 
reactivate KSHV (113), though PELs are BCR negative. Different 
sets of events may trigger KSHV reactivation in the oral cavity ver-
sus endothelial cells.

Update on LANA function and structure
LANA binds the viral terminal repeats, specifically two sequence-
conserved, high-affinity binding sites (LBS1 and LBS2) and a 
more divergent third, low-affinity site (114–116). LANA can be 
thought of as a dumbbell-like structure in which a stalk of inter-
nal repeats separates the two globular terminal regions. The stalk 

Figure 2. Epigenetic modifications to KSHV upon primary infection, latency, and reactivation. DNA is shown as a single line (linear inside virion, circular 
as episomal plasmid). Depicted in the figure is the transition of primary infection towards long-term molecular latency as well as transition of latent infec-
tion to reactivation. L and R represent the LANA and Rta promoters, respectively. Active promoters are designated by black arrows, and inactive promoters 
are indicated by white arrows. Cylinders indicate chromatin marks (histones) of either repressive (orange) or active (green) nature. PRC, polycomb repres-
sive complex; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; DNMT, DNA methyltransferase; TLK2, tousled-like kinase 2; JMJD, Jumonji 
domain–containing protein; UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome (lysine-specific demethylase).
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is associated with hyperproliferation and lymphoma. EBV relies on 
endogenous miRNA-155 to drive lymphoblastoid cell line immor-
talization (129, 135). Similarly, KSHV encodes an ortholog of  
miRNA-155 named miRNA-K12-11 that contains 100% seed 
sequence identity (136, 137). This KSHV ortholog complements the 
proliferative deficits observed in miR-155-deficient mice and drives 
lymphoma in a CD34 reconstitution model (138, 139). While miR-
155 is the first and best-studied viral ortholog of a cellular miRNA, 
it is not the only one. As our appreciation for the complexities of 
host cell miRNA function and regulation grows, we can expect to 
gain new insights into the biology of KSHV miRNAs as well.

Genomic explorations of KS and PEL
Only a small fraction of KSHV-infected children develop KS, just 
as only a small fraction of EBV-infected children develop Burkitt 
lymphoma. In the context of solid organ transplantation, only a 
fraction of KSHV-seropositive transplant recipients develop KS, 
similar to the small fraction of EBV-seropositive transplant recipi-
ents that develop posttransplant lymphoproliferative disease, 
a condition associated with EBV infection of B cells after thera-
peutic immunosuppression. Currently, there is no screening of 
organ donors for KSHV positivity, although screening for KSHV in 
donors is warranted. KS that develops in transplant patients is usu-
ally a late complication, developing several months after the onset 
of immune suppression therapy. By contrast, the onset of herpes 
simplex and CMV reactivation disease is more immediate, often 
necessitating acyclovir prophylaxis for the first 6 months after 
transplantation. The delayed emergence of KS vis-à-vis clinical 
diseases associated with these other herpesviruses suggests that in 
addition to KSHV and in addition to immune deficiency, genomic 
alterations may contribute to KSHV-associated neoplasia.

Family linkage studies in classic KS support the notion of 
susceptibility loci for KS (140–142). Whereas t(8;14) and related 
translocations targeting MYC are the defining genomic event in 
EBV-related Burkitt’s lymphoma, MYC translocations are not 
present in PEL. Rather, the KSHV viral protein LANA drives 
MYC overexpression (143, 144). Comparative genome hybridiza-
tion uncovered fragile histidine triad (FHIT) deletion as over-
represented in PELs, and targeted sequencing studies identified 
a polymorphism in IL-1 receptor–associated kinase 1 (IRAK1) 
as significantly overrepresented in PELs (145, 146). Moreover, 
IRAK1 signaling is required for PEL growth. This observation 
parallels Waldenstrom macroglobulinemia and a fraction of dif-
fuse large B cell lymphomas, where gain-of-function mutations 
in MyD88, the upstream partner of IRAK1, are present (147, 148). 
It is important, however, to recognize that the rarity of PEL and 
classic KS incidence hinders genomic explorations, which limits 
the statistical significance of any association.

PTEN, p53, and Rb are not deleted in PEL or KS; rather, 
they are inactivated posttranslationally, e.g., by direct binding to 
LANA, or via expression of the CDK1-resistant viral cyclin homo-
log vCYC (149). This may explain why KS is initially responsive to 
DNA-damaging chemotherapy. Susceptibility to etoposide cor-
relates with p53 mutation status in PEL, and p53 activation by 
nutlin-3 leads to apoptosis (120, 121). In KS and PEL, the human 
genome is dynamic and the host mutational landscape is shaped 
by selection during clonal evolution of the tumor just as it is for 

Viral miRNAs support viral infection and latent 
persistence
A recently emerged common feature among all herpesviruses is 
the utilization of virally encoded miRNAs as a means to modu-
late the host cell during latency and primary infection. In Marek’s 
disease virus, a B cell–tropic alpha herpesvirus of chickens, viral 
miRNAs are the primary driver of oncogenesis. Recently, KSHV 
mir-K12-10a was identified as the molecular driver behind the 
in vitro transforming phenotype of KSHV Kaposin, since it is 
embedded within the open reading frame of this protein (123). 
The role of the KSHV miRNAs is often more subtle, but it is 
important to bear in mind that virally encoded miRNAs account 
for 50% or more of all miRNAs in a KSHV-infected B cell. KSHV 
encodes 12 pre-miRNA loci, which can give rise to 24 mature 
miRNAs and many more if alternative processing is considered 
(124–126). Many of the viral miRNAs are also secreted into pleu-
ral fluid and circulate in the blood of KS patients (127). Thus, they 
serve as biomarkers of latent infection.

In general, viral miRNAs target specific cellular mRNAs, lead-
ing to their degradation (via an siRNA-like mechanism) and inhi-
bition of mRNA-directed translation. miRNAs are developmen-
tally regulated and fine-tune lineage differentiation and cellular 
signaling. The targets of the KSHV miRNAs have been established 
through a series of comprehensive biochemical studies (128–131). 
Thus far, miRNA studies have been constrained by sensitivity lim-
its for detection of individual miRNAs and for the discovery of 
miRNA-target interactions. Targets with functions that seem to 
befit the biology of B cell development, endothelial cell differen-
tiation, and KSHV (such as BACH1, xCT, MAF, and others) have 
been individually validated (132–134). These are by no means the 
only targets, and it is anticipated that additional targets will be 
identified in the future.

Cellular miRNA-155 is central to B cell lineage development 
in the germinal center. Downregulation of miRNA-155 is associ-
ated with terminal differentiation of plasma cells and loss of pro-
liferative potential. Conversely, ectopic expression of miRNA-155 

Figure 3. KSHV vGPCR, K1, K15, and vIL-6 proteins impact the PI3K/AKT/
mTOR signaling pathway. Multiple KSHV viral proteins activate the PI3K/
AKT/mTOR signaling pathway at different nodes in this pathway. Activa-
tion of this pathway ultimately results in cell survival and cell proliferation.
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non–infection-associated cancers. The presence of KSHV modi-
fies a particular pattern of mutations, but these mutations affect 
the same progrowth and antiapoptosis pathways as in other can-
cers. However, the interpretation of signature mutations becomes 
complicated in light of their role in infection-associated cancers, 
such as PEL or KS. Whether a particular event has been selected 
for as a driver of tumorigenesis after viral infection or if it repre-
sents a susceptibility allele for the primary infection event (or 
asymptomatic, systemic persistence) is not always apparent.

Only recently have whole KSHV genome sequences become 
available from patients and primary biopsies (150, 151). These 
sequences augment extensive studies that trace the origin and 
evolution of KSHV based on single-gene analyses (152). KSHV 
sequences show overall structural concordance and limited varia-
tion, as would be expected since viral replication is the result of 
error-correcting, DNA-dependent DNA polymerases (the cellular 
DNA polymerase during latency and a viral KSHV-encoded DNA 
polymerase during lytic replication). During B cell latency, multi-
ple copies of the KSHV plasmid are maintained, replicated by the 
host DNA polymerase, and propagated to daughter cells during 
host cell division events. As yet, there is no evidence for integra-
tion of the KSHV genome. Nevertheless, defective variants have 
been described and are expected to arise in the context of clonal 
expansion of PEL or advanced KS. KSHV noncoding regions such 
as the miRNA locus show more variation, and differences in  
miRNA sequences correlate with processing and function (153–
155). The number of terminal repeats in the KSHV genome is 
highly variable and can be used for strain typing (156, 157). Like-
wise, membrane proteins that are subject to immune recognition, 
such as K1 and K15, contain hypervariable regions in the extracel-
lular domains (158–160).

Targeted treatment approaches to KSHV-
associated cancers
KS is a disease of endothelial cells, and details of its pathobiology 
have been extensively reviewed. KS is among the most angiogenic 
cancers known to arise in humans. If we can decipher which factors 
drive KS and which treatments interrupt KS angiogenesis, then we 
will have potent leads for other cancers that depend on angiogen-
esis. VEGF, stem cell factor (SCF, also known as KIT ligand), and 
platelet-derived growth factor (PDGF) are the best-characterized 
paracrine drivers of KS angiogenesis (161, 162), and these are 
the target of a number of therapeutic approaches for KS. VEGF-
neutralizing antibodies (bevacizumab) and receptor tyrosine 
kinase (RTK) inhibitors, such as imatinib, have efficacy in KS (163, 
164), although their therapeutic impact as single agents is limited 
because of redundancy in the paracrine network. Clinical studies 
have also started investigating the role of thalidomide, lenalido-
mide (NCT01057121), and pomalidomide (NCT02659930) in KS. 
These structurally related compounds are approved for the treat-
ment of multiple myeloma and have antiinflammatory and anti-
angiogenic activities, though the exact molecular mechanisms 
underlying their effects have not necessarily been established. 
KSHV activates the PI3K/Akt/mTOR signaling pathway at differ-
ent nodes via the viral proteins vGPCR, K1, ORF36/vPK, vIL-6, 
and K15, as well as through virus-mediated upregulation of cel-
lular growth factors, e.g., VEGF and PDGF (165–172) (Figure 3). 

PI3K activates the cell survival kinase AKT, which subsequently 
activates mTOR. Rapamycin (also known as sirolimus) has clini-
cal activity against KS (173, 174). Switching from cyclosporine A 
to rapamycin as the primary immunosuppressant has become the 
first line of therapy for transplant KS. The clinical phenotype can 
be recapitulated in preclinical models of KS and PEL (175–179). In 
KS, targeting mTOR was associated with a decrease in VEGF pro-
duction. In PEL, rapamycin reduced IL-6 and IL-10 secretion, and 
inactivating PI3K and mTOR together had more potent antitumor 
activity than inhibiting mTOR alone (180). The latter findings pro-
vide a guide path for the development of next-generation PI3K/
AKT/mTOR targeting strategies against KS.

Therapies that target immunomodulatory mechanisms also 
hold promise for KS and KSHV-associated diseases. Siltuximab, a 
humanized anti–IL-6 antibody, has been FDA approved for classic 
Castleman’s disease (181), and is likely to also show efficacy against 
MCD. A pilot clinical trial of tocilizumab, a humanized antibody 
against the IL-6 receptor, is open for MCD (NCT01441063). Block-
ing IL-6 stymies PEL growth in preclinical models (182). Hsp90 
inhibitors exhibited nanomolar EC50 against PEL and KS in three 
independent studies (183–185). PELs are also extremely sensitive 
to NF-κB pathway inhibitors such as bortezomib (186, 187), and a 
clinical trial with adjuvant bortezomib is ongoing. Other targets 
with encouraging preclinical results are NOTCH (188–192), and the 
KSHV receptor, ephrin receptor A2 (EphA2) (193–195).

While some individual AIDS-KS lesions respond to combi-
nation antiretroviral therapy (cART) and the ensuing immune 
reconstitution, others do not. In the US, one third of KS cases now 
develop in HIV patients with no detectable HIV viral load and 
near-normal CD4 counts (196, 197). This type of KS no longer 
signifies terminal AIDS. In sub-Saharan Africa, where KS remains 
the most common disease among HIV patients and the most com-
mon AIDS-presenting symptom, initiating cART can lead to KS 
exacerbation in KS-IRIS (9, 10). At least two large clinical trials are 
currently underway to determine if it is better to give cART and 
chemotherapy sequentially or together, and which chemotherapy 
is best suited for which stage of KS (198, 199). Liposomal doxoru-
bicin, daunorubicin, other anthracycline formulations, and taxol 
constitute the mainstay of KS treatment.

The need for a better understanding of KSHV 
remains
KS is the most common cancer in males in many African countries 
and remains the most common cancer in HIV-positive persons in 
countries where cART coverage is near universal. As with all dis-
eases, a detailed molecular understanding of the primary etiologic 
agent, i.e., KSHV, forms the basis for the development of targeted 
therapeutics. If it is possible to cure latent HIV virus, it should also 
be possible to cure latent KSHV. LANA represents the most direct 
target for such an approach, although as described above, KSHV 
latency and KSHV persistence involve many viral proteins as well 
as viral miRNAs. Any of these proteins could become a clinically 
tractable target. A viral cure is limited without preventing subse-
quent reinfection. Pre-exposure prophylaxis may be possible for 
transplant patients or other at-risk populations, though the side 
effects of current antivirals (e.g., ganciclovir) are rather severe. A 
preventative vaccine would provide the best approach.
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Is it time for a KSHV vaccine?
We would argue that KSHV vaccine development is needed, and 
that both preventative and therapeutic KSHV vaccines would be of 
benefit. KSHV transmission among infants is similar to that of all 
other herpesviruses; by puberty, greater than 80% of children sero-
convert in KSHV endemic regions. By contrast, transmission among 
adults in many parts of the world (excluding Africa and the Mediter-
ranean) is so poor that repeated contact or immunodeficiency, as in 
high-risk populations, is needed to sustain the virus at a greater than 
5% population-wide prevalence. This suggests that only a fraction 
of exposures leads to establishment of latency and eventual disease. 
Systemically circulating and salivary levels of KSHV in asymptom-
atic persons are orders of magnitude lower than those of EBV, her-
pes simplex virus, or human CMV (13, 14, 200). Evidence of KSHV 
superinfection in immune-competent persons is limited. A little 
priming of the immune system by a vaccine prior to establishment 
of latency may be all that is needed to eradicate KSHV and KS-asso-
ciated diseases from the human population.
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