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Ecology and epidemiology
Chikungunya virus (CHIKV) is a mosquito-borne virus responsi-
ble for periodic and explosive outbreaks of a febrile disease that 
is characterized by severe and sometimes prolonged polyarthritis. 
CHIKV was first recognized as a human pathogen after it was iso-
lated from the serum of an infected patient during an outbreak of 
debilitating arthritic disease in 1952 in present-day Tanzania (1–3). 
Because of the stooped posture and rigid gait of infected individ-
uals, the disease was given the name chikungunya, a word from 
the Kimakonde language that translates as “that which bends up” 
(2). The vast majority of infected individuals develop chikungunya 
fever, an acute illness notable for rapid onset of fever, incapaci-
tating polyarthralgia and arthritis, rash, myalgia, and headache 
(Table 1 and ref. 4). Acute CHIKV disease symptomatically resem-
bles dengue fever, and retrospective case reports suggest that 
CHIKV outbreaks occurred as early as 1779 but were inaccurately 
attributed to dengue virus (5, 6). However, unlike dengue, a char-
acteristic feature of CHIKV disease is recurring musculoskeletal 
disease primarily affecting the peripheral joints that can persist 
for months to years after acute infection (7–10). CHIKV disease 
is often self-limiting and has a low fatality rate (~0.1%) (11), but 
manifestations of CHIKV infection that lead to acute and chronic 
disability have considerable implications, including a substantial 
impact on quality of life for infected patients as well as consider-
able economic and community consequences (7, 9, 12).

Transmission of CHIKV occurs mainly through the bite of an 
infected Aedes (subgenus Stegomyia) species of mosquito. However, 
maternal-fetal transmission can occur intrapartum, which results 
in high rates of infant morbidity (12, 13). Historically, CHIKV has 
been endemic in tropical and subtropical regions of sub-Saharan 
Africa and Southeast Asia, where two distinct CHIKV transmission 
cycles exist. CHIKV is maintained in a rural enzootic transmis-
sion cycle, which occurs between various forest or savannah Aedes 

(Stegomyia) mosquitoes and animal reservoirs (14–17), with nonhu-
man primates being the presumed major reservoir host (4, 18–21). 
Occasional introduction of the virus into urban areas is thought to 
cause periodic outbreaks of CHIKV disease (1, 14). Urban trans-
mission is mediated primarily by Aedes aegypti or Aedes albopictus 
mosquitoes and occurs in a human-mosquito-human transmis-
sion cycle (22). While enzootic sylvan transmission of CHIKV 
has been well established in Africa, outbreaks in Asia have been 
mainly attributed to urban human-mosquito-human transmission, 
although there is limited evidence for enzootic transmission (18, 
23–25). Little is known about the factors contributing to the natu-
ral maintenance of CHIKV (1, 15, 26, 27), but understanding cata-
lysts that promote CHIKV maintenance and spillover dynamics is 
essential to combatting emergence and spread of the virus.

Since the first reports of CHIKV infection in Africa in the 1950s, 
subsequent epidemics of CHIKV occurred throughout the latter half 
of the 20th century in countries within Asia and sub-Saharan Africa 
(Figure 1 and reviewed in ref. 28). Phylogenetic analyses of CHIKV 
sequences indicate that CHIKV originated in Africa over 500 years 
ago (29), and a common lineage diverged into two distinct branch-
es, termed West African (WA) and East/Central/South African 
(ECSA) (28–31). WA strains have been associated mainly with enzo-
onotic transmission and small focal outbreaks of human disease in 
countries located in western Africa (Figure 1 and ref. 30). In con-
trast, strains from the ECSA lineage have repeatedly spread to new 
regions to cause significant urban epidemics. The first emergence 
of an ECSA strain outside of Africa is estimated to have occurred 
between 70 and 150 years ago in Asia (29). The virus continued to 
circulate in this area, evolving independently of the ECSA lineage 
into a distinct Asian genotype (29), which has caused numerous 
outbreaks of CHIKV disease in this region (Figure 1 and ref. 28).

An ECSA strain emerged again during an outbreak in Kenya 
in late 2004, initiating one of the largest CHIKV epidemics on 
record, with expansion to areas well beyond the historical range 
of the virus (4, 32). During this devastating epidemic, the virus 
spread to a number of islands in the Indian Ocean, India, and 
parts of Southeast Asia, leading to over 6 million estimated cases 
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Like that of the ECSA lineage, the geographical range of the 
Asian lineage has also recently expanded. Since 2011, when the 
virus was first detected in the Pacific Island region of New Cale-
donia (50), CHIKV has caused outbreaks on 10 of the 22 coun-
tries and territories of the Pacific Islands, with strains from the 
Asian lineage being responsible for the majority of these out-
breaks (51, 52). Beginning in 2012, islands in Oceania were bom-
barded with not only CHIKV outbreaks, but also epidemics of 
Dengue virus and Zika virus (50, 53, 54). As with CHIKV, infect-
ed travelers are thought to be the main source of Dengue and 
Zika virus outbreaks in the Pacific. Strains from the Asian and 
ECSA lineages, including the IOL subgroup, continue to cocircu-
late and spread within the Indian subcontinent, Southeast Asia, 
and Oceania (Figure 1 and refs. 41, 47, 55–60).

With such high rates of virus importation by infected travelers, 
the introduction of CHIKV into the Western Hemisphere seemed 
inevitable. In December 2013, the first local transmission of 
CHIKV in the Western Hemisphere in modern history was report-
ed, with autochthonous cases identified in the Caribbean island 
of French St. Martin (61). The emergence of CHIKV in the West-
ern Hemisphere was remarkable in that the virus spread rapidly 
to immunologically naive populations in the Caribbean as well as 
Central, South, and North America. Since the 2013 introduction 
of CHIKV in the Americas, over 2 million suspected cases caused 
by endemic transmission have occurred in almost 50 countries, 
including 12 cases of autochthonous transmission in the United 
States (Figure 1 and ref. 51). The initial outbreak of CHIKV in the 
Americas was first attributed to a variant from the Asian lineage. 
However, the introduction of an ECSA strain into Brazil in 2014 
(62) raises a concern for vector adaptation in the Americas and 
spread of CHIKV to more temperate regions, such as the United 
States, where A. albopictus has a greater range (Figure 1 and ref. 
63). Because of globalization and the expansion and year-round 
presence of relevant vectors, especially in densely populated 
urban centers (63), the risk that the virus will become endemic in 
tropical regions of the Americas remains high. Establishment of 
CHIKV in the Americas, as well as repeated introduction events, 
suggests that the virus will continue to spread and that the sporad-
ic and explosive outbreaks of CHIKV observed in Africa and Asia 
also will likely occur in the Western Hemisphere.

CHIKV structure, genome, and replication cycle
CHIKV is a small (~70 nm in diameter), enveloped virus that is a 
member of the Old World Semliki Forest virus group of arthrito-
genic alphaviruses within the Togaviridae family (reviewed in ref. 
64). The CHIKV genome is approximately 11,800 nucleotides, 
constituting a single-stranded, message-sense RNA with a 5′ 
7-methylguanosine cap and a 3′ poly-A tail (65). The genome con-
tains two open reading frames (ORFs) separated by a noncoding 
junction as well as 5′- and 3′-untranslated regions (65, 66). Four 
essential nonstructural proteins (nsP1, 2, 3, and 4) constitute the 
RNA replicase (Table 2) and are encoded by the 5′ two-thirds of the 
genome (65, 66). The 3′ ORF is translated from a subgenomic pos-
itive-strand mRNA and encodes six proteins (Table 2), including 
three major structural proteins (capsid, E1, and E2) (64, 66–68). 
The CHIKV virion is formed by a lipid bilayer envelope tightly 
associated with an icosahedral nucleocapsid shell (240 capsid 

of CHIKV disease (Figure 1 and refs. 4, 30, 32, 33). International 
air travel greatly facilitated the geographic expansion of CHIKV 
during this epidemic (34–36), with viremic travelers importing 
an unprecedented number of CHIKV cases into naive countries, 
including more temperate regions in Europe and the United States 
(35, 37, 38). Infected travelers often served as sentinels, seeding 
autochthonous transmission of the virus in naive areas, including 
in Italy in 2007 (37) and France in 2010 (38).

Historically, urban transmission of CHIKV was vectored 
mainly by A. aegypti mosquitoes. However, many of the recent 
outbreaks in the Indian Ocean basin and Southeast Asia have been 
attributed to circulating strains from the Indian Ocean lineage 
(IOL), a newly emerged subgroup within the ECSA clade (29). 
Some strains within this subgroup contain an adaptive mutation 
(E1-A226V) that increases viral fitness in A. albopictus without 
compromising replication in A. aegypti (39–45). This mutation 
has been selected convergently in multiple ECSA strains in dif-
ferent geographic regions during the past decade (31, 34, 46–48). 
Importantly, the E1-A226V substitution requires epistatic interac-
tions (E1-98A and E2-211T) to allow penetrance in A. albopictus 
(reviewed in ref. 49). These epistatic variants are lineage-specif-
ic, as they have been observed in other ECSA and WA strains but 
not in strains from the Asian lineage, rendering viruses from the 
Asian clade genetically constrained in the capacity to adapt to A. 
albopictus (41). Additional substitutions in viral glycoproteins also 
augment replicative capacity in A. albopictus (reviewed in ref. 49).

Table 1. Typical and atypical manifestations of CHIKV disease 
in patients

Organ/System Typical Atypical
Systemic Fever; asthenia Lymphadenopathy
Musculoskeletal Arthralgia; arthritis; 

myalgia; joint edema; 
tenosynovitis; backache; 
persistent or relapsing-

remitting polyarthralgias

Chronic inflammatory rheumatism; 
articular destruction

Dermatological Rash; erythema Bullous dermatosis; 
hyperpigmentation; stomatitis; 

xerosis
Neurological Headache Meningoencephalitis; 

encephalopathy; seizures; 
sensorineural abnormalities; 

Guillain-Barré syndrome; paresis; 
palsies; neuropathy

Gastrointestinal Nausea; vomiting; abdominal pain; 
anorexia; diarrhea

Hematological Lymphopenia; 
thrombocytopenia

Hemorrhage

Ocular Retro-orbital pain; 
photosensitivity

Optic neuritis; retinitis; uveitis

Cardiovascular Myocarditis; pericarditis; 
heart failure; arrhythmias; 

cardiomyopathy
Hepatic Fulminate hepatitis
Pulmonary Respiratory failure; pneumonia
Renal Nephritis; acute renal failure
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with host proteins, form an early, short-lived viral replicase that 
synthesizes a full-length negative-sense vRNA (64).

Negative-strand synthesis is linked to formation of viral repli-
cation compartments termed spherules, which are small, vesicu-
lar structures that form at the plasma membrane (PM) and serve 
as the site of vRNA replication (Figure 2). The nsPs are thought 
to localize at the neck of the spherules, which house dsRNA inter-
mediates, protecting them from degradation and recognition by 
cellular pattern-recognition receptors (64, 80–84). As infection 
proceeds, spherules are internalized to form large cytopathic vac-
uoles (CPV-I), which contain markers from endosomal and lyso-
somal membranes (Figure 2 and refs. 80–82). P123 accumulation 
leads to complete proteolytic processing of the polyprotein, result-
ing in a switch of the replicase to an abundant conformer that uses 
negative-sense vRNA as a template for amplification of genomic 
positive-sense vRNA as well as transcription of a subgenomic, 
positive-sense vRNA (81) that encodes the structural polyproteins 
(capsid, E3, E2, 6K, TF, and E1). Following translation of capsid 
protein, autoproteolysis releases it from the structural polyprotein, 
allowing interaction with newly synthesized genomes to catalyze 
oligomerization and formation of intact nucleocapsids containing 
a single molecule of the RNA genome (Figure 2 and ref. 64). Trans-
lation of the structural polyprotein continues, generating a major-
ity product, E3-E2-6K-E1, and a minor product, E3-E2-TF, due to 
ribosomal frameshifting (67, 68). A signal sequence present at the 

copies) that encapsidates genomic RNA (64, 69). Embedded with-
in the viral envelope are heterodimers of the E1 and E2 glycopro-
teins arranged in trimers forming an icosahedral lattice (69).

Although the general events of CHIKV replication are compa-
rable to those of other alphaviruses (Figure 2), much more remains 
to be discovered about the specific biology of CHIKV replication. 
However, CHIKV displays broad tropism, replicating in many ver-
tebrate and invertebrate cells (70–73); bona fide proteinaceous 
receptors have not been identified for CHIKV. Glycosaminogly-
cans, which are expressed on many susceptible cell types, appear 
to serve as attachment factors to enhance infectivity (64, 74–77). 
After E2-mediated attachment to cells, receptor-bound particles 
are internalized mainly by clathrin-mediated endocytosis (Figure 
2 and refs. 70, 77, 78). Endosomal acidification triggers conforma-
tional changes in the viral glycoproteins, leading to exposure and 
insertion of the buried E1 fusion loop into the host membrane, 
which results in fusion of the viral envelope and endosomal mem-
brane (77). Following release into the cytoplasm, the nucleocapsid 
disassembles to deliver genomic viral RNA (vRNA) into the cyto-
sol for translation (77). The incoming CHIKV genome is directly 
translated to produce the nonstructural precursor polyprotein 
P1234, which is cleaved by the virus-encoded protease located 
in nsP2 into P123 and nsP4 (64, 79). Some strains encode an opal 
stop codon following nsP3, and low-frequency read-through yields 
both P123 and P1234 (79). Together, P123 and nsP4, presumably 

Figure 1. Geographic distribution of endemic CHIKV and its primary vectors, Ae. aegypti and Ae. albopictus. Countries in which autochthonous cases of 
CHIKV have been reported are specified with colored symbols representing the distinct viral genotypes detected during outbreaks in that country. West 
African strains are indicated by purple triangles; Asian strains are indicated by green circles; East/South/Central African (ESCA) strains are indicated with 
blue squares; strains of the Indian Ocean lineage, a subtype of the ESCA clade, are indicated with blue squares with a cross; and strains whose genotype 
has not been determined are indicated with gray diamonds. Symbols are shaded to differentiate transmission prior to (darker hue) or after (lighter hue) 
the reemergence of the virus in the Indian Ocean (ECSA strain in 2005) and Pacific Islands (Asian strain in 2010). Symbols indicate the countries in which 
natural transmission has occurred and are not meant to indicate precise locations of outbreaks. Overlayed with CHIKV distribution is the geographic range 
of the two primary vectors responsible for urban mosquito-human-mosquito transmission of the virus. Range of Ae. aegypti is indicated in red; range of 
Ae. albopictus is indicated in yellow; and areas where both mosquito species are present are indicated in orange. Endemic CHIKV data were obtained from 
numerous PubMed publications (1, 3, 23, 24, 28, 30–32, 37, 38, 46–62). Range of mosquito data was obtained from (63).
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CHIKV are areas of active research. A comprehensive understand-
ing of the CHIKV replication cycle in both mammalian and mosqui-
to cells is essential for development of effective antivirals.

Disease mechanisms and host immune 
responses
Studies of CHIKV-infected humans and animals have defined 
symptoms and immune responses of acute and chronic CHIVK dis-
ease, but much of the molecular interplay between virus and host 
remains to be established. CHIKV-induced disease shares many 
similarities with illnesses caused by other arthritogenic alphavi-
ruses, with some distinctions observed (reviewed in refs. 101–103). 
After deposition into the bloodstream or skin through a bite of an 
infected mosquito, CHIKV replicates at the site of inoculation in 
fibroblasts and possibly macrophages (Figure 3 and refs. 8, 70, 104, 
105). Despite triggering innate immune responses, the virus spreads 
via lymphatics into the bloodstream, allowing dissemination to sev-
eral sites of replication, most commonly lymphoid organs (lymph 
nodes and spleen), skin, and especially tissues where prominent 
disease symptoms occur (muscle, peripheral joints, and tendons) 
but also in brain and liver in more severe cases (72, 104–109). Rep-
lication of CHIKV in peripheral tissues results in remarkably high 
serum viral loads (>109 virus particles/ml; ref. 110). Such high-level 
viremia in humans is rare for most alphaviruses and allows CHIKV 
to be easily transmitted to mosquitoes via a bloodmeal.

Acute CHIKV infection elicits robust innate immune responses, 
leading to elevation of type I IFNs and numerous proinflammatory 
chemokines, cytokines, and growth factors (Table 2 and refs. 70, 
111–115). Type I IFN signaling controls viral replication and patho-
genesis during acute infection (104, 114–116). In humans, IFN-α 
appears early in infection and correlates with viral load (111, 114, 
117). Coincident with rising viral loads and IFN-α responses, the 
vast majority of infected patients experience sudden onset of clini-
cal illness (Table 1), with a small proportion of infected individuals 
(5%–28%) remaining asymptomatic (118, 119). Acute CHIKV infec-
tion is predominated by high fever (39°C–40°C), which can last up 

N-terminus of E3 traffics the major and minor structural polypro-
teins through the host secretory pathway, where cleavage by host 
proteases produces pE2 (E3-E2); 6K or transframe (TF); and E1.  
6K and TF are viral accessory proteins that share an N-terminus 
but have disparate C-termini, resulting from ribosomal frame-
shifting, and are hypothesized to form ion channels (67). Although 
6K and TF are found at low levels in virion particles (68, 85, 86) 
and appear to contribute to viral budding (68, 87) and pathogen-
esis (88), their precise roles in glycoprotein processing, assembly, 
budding, and particle stability remain to be clarified (67, 68, 88).

As E1 and E3-E2 transit the secretory pathway (Figure 2), they 
remain associated as a noncovalent, hetero-oligomeric complex 
that undergoes conformational changes and posttranslational 
modifications, including palmitoylation and N-linked glycosyla-
tion as well as release of E3 by furin, to form mature spikes at the 
PM (Figure 2 and refs. 89, 90). Recruitment of intact nucleocap-
sids to membrane-associated envelope glycoproteins leads to PM 
budding of assembled particles (64). Late in infection, a second 
type of virally induced cytopathic vacuole, CPV-II, is formed (Fig-
ure 2). These structures contain helical tubular arrays of viral gly-
coproteins within the vesicles, which are studded with nucleocap-
sids on their cytoplasmic face (91–93). Their proximity to the PM 
suggests that CPV-IIs may be an assembly intermediate (92), but 
it is not clear whether they are necessary for efficient infection or 
contribute to pathogenesis. CHIKV CPV-I and CPV-II structures 
also have been observed in mosquito cells (91).

Infection of mammalian cells with CHIKV leads to massive 
changes, including antiviral responses (e.g., apoptosis, IFN, stress 
granule formation, and unfolded protein response) and proviral 
responses (e.g., host cell shutoff and authophagy) (94). CHIKV 
nsP2 and nsP3 display activities that counteract some of these anti-
viral responses (94). Authophagy is proposed to play a global pro-
CHIKV function in human cells, possibly by limiting apoptosis, and 
may be a pathogenesis determinant (95–97). Although some addi-
tional proviral host factors have been identified (70, 74, 78, 98–100), 
specific host pathways and mechanisms that promote replication of 

Table 2. CHIKV proteins and functions

Protein Size (aa) Function
Nonstructural proteins
  nsP1 535 Methyltransferase and guanylyltransferase activity that caps viral RNA; sole membrane anchor for replicase complex
  nsP2 798 N-terminal NTPase, helicase, and RNA triphosphatase activities; C-terminal cysteine protease activity responsible for processing of 

nonstructural polyprotein
  nsP3 530 Phosphoprotein with unknown functions, but important for minus-strand synthesis; contains macro domain and SH3-binding regions; likely 

interacts with host proteins
  nsP4 611 RNA-dependent RNA polymerase (RdRp); putative terminal transferase activity
Structural proteins
  Capsid 261 Encapsidates genomic RNA to form nucleocapsid core; carboxyl domain is an autocatalytic serine protease
  pE2 487 Intermediate composed of E3 and E2; cleaved by host furin protease
  E3 64 N-terminal domain is uncleaved leader peptide for E2; may help shield fusion peptide in E1 during egress
  E2 423 Mediates binding to receptors and attachment factors on cell membrane; major target of neutralizing antibodies
  6K 61 Leader peptide for E1; putative ion channel; may enhance particle release
  TF 76 Transframe protein generated by ribosomal frameshifting; shares N-terminus with 6K; putative ion channel; may enhance particle release
  E1 439 Type II fusion protein; mediates fusion of viral envelope and cellular membrane via fusion peptide
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1). In recent epidemics, more atypical and severe symptoms have 
been observed, including multiple dermatological manifestations, 
hemorrhage, hepatitis, myocarditis, neurological disorders, and 
ocular disease (Table 1 and refs. 110, 121–124). Atypical symptoms 
are most prevalent among vulnerable groups, including neonates, 
the elderly, and those with underlying comorbidities.

to a week and may occur in a biphasic manner (2, 120). After fever 
onset, most patients develop severe and often debilitating polyar-
thralgia that is usually bilateral and symmetric, most commonly in 
ankles, wrists, and phalanges. Other symptoms include arthritis, 
asthenia, conjunctivitis, gastrointestinal distress, headache, myal-
gia, and rash, which is usually maculopapular and pruritic (Table 

Figure 2. CHIKV replication cycle in mammalian cells. (i) E2 binds to the cell surface via an unknown receptor and possibly glycosaminoglycans as 
attachment factors. (ii) CHIKV enters the cell through clathrin-mediated endocytosis. Acidification of endosomes leads to insertion of the fusion peptide 
in E1 into the endosomal membrane. (iii) Fusion of the viral envelope and endosomal membrane releases nucleocapsid into the cytosol. (iv) Disassembly 
of the nucleocapsid liberates positive-sense genomic RNA and nonstructural protein (nsP) translation occurs. (v) Four nsPs, together with genomic RNA 
and presumably host proteins, assemble at the plasma membrane (PM) and modify it to form viral replication compartments (spherules) containing viral 
dsRNA. nsP1–4 function as a replicase and localize to the spherule neck to generate genomic, antigenomic, and subgenomic vRNAs. (vi) Spherule internal-
ization allows formation of large cytopathic vacuoles (CPV-1) that house multiple spherules. Spherules at the PM or within CPV-I are fully functional. (vii) 
Translation of subgenomic RNA produces the structural polyprotein, and capsid autoproteolysis releases free capsid into the cytoplasm. Translocation of 
E3-E2-6K-E1/E2-E2-TK polyproteins into the ER. E2/E1 are posttranslationally modified, transit the secretory system, and are deposited at the PM. (viii) 
Interaction of capsid and genomic RNA leads to formation of icosahedral nucleocapsids. (ix) Nucleocapsids assemble with E2/E1 at the PM, resulting in 
budding of mature progeny virions. (x) Later in infection, CPV-IIs form, containing hexagonal lattices of E2/E1 and are studded with nucleocapsids. (xi) 
CPV-IIs likely serve as transport vehicles and assembly sites for structural proteins, allowing formation of mature virions and egress. 
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In animal models (reviewed in refs. 20 and 125), innate immune 
responses triggered by viral replication recruit inflammatory cells to 
infected musculoskeletal tissues, which are thought to contribute 
to muscular and articular damage resulting in pain and discomfort 
in muscles, joints, and tendons (Figure 3). Virus titers decline with 
the development of CHIKV-specific adaptive immunity. Although 
viremia is usually cleared 5–7 days after infection and most acute 
symptoms resolve within 2 weeks, rheumatic manifestations can 
persist for months to years in a subset of individuals (7–10, 37, 103, 
126, 127). The percentage of CHIKV-infected patients reported to 
develop protracted illness varies greatly (~14% to ~87%), but an 
average prevalence of approximately 48% among infected patients 
has been estimated (128). Risk factors for chronic CHIKV disease 
include age (>45 years), preexisting chronic inflammatory arthrop-
athy, and severity of symptoms during the acute phase (129, 130). 
Two types of persistent CHIKV-induced rheumatic disorders have 
been described (131). The vast majority of patients experience 

chronic musculoskeletal disorders and usually respond to some 
extent to analgesics, antiinflammatory treatments, and physiother-
apy. However, approximately 5% of patients meet the criteria for 
chronic inflammatory rheumatism, which may be destructive and 
deforming (131). Thus, the underlying mechanisms of CHIKV dis-
ease may involve multiple distinct immunopathological processes. 
Early differentiation of chronic CHIKV infection would inform dis-
ease management, which may vary according to type.

Symptoms of acute CHIKV disease are caused by direct cellu-
lar damage and local inflammation, but the specific contributions 
of viral replication and the host immune response to CHIKV infec-
tion are yet to be completely unraveled. CHIKV infection is cyto-
pathic and induces apoptosis, resulting in direct tissue injury (70, 
132, 133). Numerous cell types, many of which are located at sites of 
disease, are susceptible to CHIKV, including chondrocytes, endo-
thelial cells, fibroblasts, hepatocytes, macrophages, monocytes, 
muscle satellite cells, myocytes, and osteoblasts (8, 72, 75, 104–
107, 113, 116, 134–139). A meta-analysis of immune mediators from 
geographically distinct cohorts (111) revealed a common signature 
profile during acute CHIKV disease in humans (Table 3). Several of 
these soluble factors are associated with the progression of rheu-
matoid arthritis (140). In multiple cohorts, elevated levels of IL-1β, 
IL-6, and monocyte chemoattractant protein-1 (MCP-1) correlate 
with disease severity (117, 141), and high levels of IL-6 and GM-CSF 
correlate with persistent arthralgia (refs. 104, 117, and Table 3). 
Thus, an imbalance of immune mediators required for effective 
antiviral defense also likely contributes to CHIKV pathogenesis. 
Although CHIKV infection is controlled by the innate immune 
response in both hematopoietic and nonhematopoietic cells (113, 
114), the specific cellular targets of infection that contribute to the 
orchestration of these responses in vivo remain largely undefined.

Although many hematopoietic cells appear refractory to CHIKV 
infection (66, 70, 114), monocytes and macrophages are targeted 
by CHIKV and contribute to virus-induced pathogenesis in both 
humans and animals (reviewed in ref. 142). Activated macrophages 
are the primary infiltrating cell in infected tissues (Figure 3 and refs. 8, 
72, 105–107), and elevated levels of MCP-1, the major chemoattrac-
tant for monocytes and macrophages, correlate with high viral loads 
in persons with acute CHIKV infection (8, 106, 111–113, 117, 143). 
Depletion of macrophages in mice results in reduced CHIKV-asso-
ciated musculoskeletal disease but significantly prolonged viremia 
(106), highlighting independent functions of macrophages in CHIKV 
disease. Monocytes and macrophages have been detected in synovial 
fluid from chronic CHIKV patients (8) and animals (105), and CHIKV 
RNA and protein are detectable in synovial macrophages from 
humans (8) and nonhuman primates (NHPs) (105) during the chronic 
phase of infection. These data suggest that macrophages are a source 
of persistent virus and contribute to CHIKV-induced arthropathy. 
Plasmacytoid dendritic cells, NK cells, and neutrophils also infiltrate 
infected tissues during acute CHIKV infection (8, 143–146), but their 
role in CHIKV control remains to be clarified.

Acute infection in humans leads to activation and proliferation 
of CD8+ T cells, while a CD4+ T cell response is dominant during 
the chronic phase of CHIKV disease (8, 115). Although activated, 
CD8+ T cells do not appear to mediate CHIKV clearance or dis-
ease in animals (125). In contrast, studies using mice deficient in 
various types of lymphocytes implicate CD4+ T cells as inflamma-

Table 3. Common elevated immune mediators associated with 
CHIKV disease in humans

Disease AcuteA SevereB ChronicC

Proinflammatory cytokines
  IFN-αD + +
  IFN-γD + +
  IL-1β +E +
  IL-2 +
  IL-2R +
  IL-6 + +E +E

  IL-7 +
  IL-8D +
  IL-12 + +
  IL-15D +
  IL-17D + +
  IL-18 +
  TNF-αD +
Antiinflammatory cytokines
  IL-1Ra + +
  IL-4 +
  IL-10D + +
Chemokines
  G-CSF +
  GM-CSFD +E

  IP-10 + +
  MCP-1 + +E +
  MIG +
  MIP-1α + +
  MIP-1β + +
Growth factors
  bFGF +
ACollective data from meta-analysis (111). BCollective cohort data (141, 197). 
CCollective cohort data (8, 117, 197, 198). DImmune mediator associated with 
rheumatoid arthritis. EImmune factor was common to all cohorts. G-CSF, 
granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; IP-10, IFN-γ–induced protein-10; MCP-1, 
monocyte chemoattractant protein-1; MIG, monokine induced by IFN-γ; MIP, 
macrophage inflammatory protein; bFGF, basic fibroblast growth factor.
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tory mediators in infected tissues (125, 147). However, these cells 
also may contribute to viral clearance (147). Tregs are involved in 
CHIKV pathology, as expansion of Tregs reduces CHIKV disease 
by selectively inhibiting CHIKV-specific CD4+ effector T cells 
(148). In addition, γδ T cells, which are abundant in skin, protect 
against CHIKV disease, as γδ T cell–deficient mice display exacer-
bated CHIKV infection (149).

Development of CHIKV-neutralizing 
antibodies is essential to control CHIKV 
viremia (125, 137, 147, 150, 151). CHIKV- 
infected humans, mice, and NHPs devel-
op potent and neutralizing IgM and IgG 
antibodies that control viremia and confer 
cross-protection against secondary CHIKV 
infections in animal models (125, 137, 143, 
147, 150–152). In humans, IgM levels are 
detected within 5–7 days after the onset 
of symptoms (153), peak several weeks 
after infection (154), and begin to wane 
over the next several months (154). An IgG 
response can be detected approximately 
7–10 days after onset of illness, often after 
viremia has been cleared (37, 154–156). 
Many mouse and human IgM and IgG 
antibodies broadly and potently neutral-
ize CHIKV (157–162). The most potently 
neutralizing antibodies target domains A 
and B of the E2 glycoprotein, with those 
targeting domain B often displaying broad 
neutralization against multiple strains of 
CHIKV and other related alphaviruses (157, 
159–161). In B cell–deficient (μMT) mice, 
persistent, steady-state viremia occurs fol-
lowing CHIKV infection (147, 150), further 
highlighting the importance of neutralizing 
antibodies in mitigating CHIKV disease.

Although antibodies control viral load, 
CHIKV antigen and RNA have been detected 
in muscle and synovial biopsies from patients 
with chronic CHIKV disease, and muscle sat-
ellite cells and synovial macrophages have 
been proposed to be reservoirs for persistent 
CHIKV in humans (refs. 8, 72, and Figure 3). 
Persistent CHIKV infection also has been 
observed for weeks to months in experi-
mentally infected mice (137, 147) and NHPs 
(105, 163), with vRNA detected in joint tissue 
(150), muscle, and spleen (105). In addition, 
persistent IgM levels have been detected in 
patients and animals experiencing chronic 
arthritis (8, 105, 126, 153, 164, 165). These 
data suggest that persistent CHIKV antigen, 
or perhaps infection, in protected cellular 
reservoirs triggers inflammation that culmi-
nates in chronic CHIKV rheumatic disease 
(Figure 3). Further investigation to identify 
specific CHIKV reservoirs and mechanisms 

of persistence will greatly inform illness management and develop-
ment of therapeutics for chronic CHIKV pathologies.

Prospective CHIKV treatments and vaccines
The recent reemergence and worldwide spread of CHIKV render 
this virus an important public health threat. Although the mortal-
ity rate of CHIKV disease is modest, the debilitating and chronic 

Figure 3. Model of acute and chronic CHIKV pathogenesis. Acute CHIKV infection begins with 
transmission of the virus via a bite of an infected mosquito to the skin, where it replicates in suscep-
tible cells, including fibroblasts and macrophages. The virus disseminates through lymphatics and 
bloodstream to typical (solid) and atypical (hatched) sites of primary replication (indicated in blue). 
Acute infection elicits an inflammatory response in infected tissues, characterized by an extensive 
infiltration of mainly macrophages and monocytes, but also neutrophils, NK cells, and lymphocytes 
in target tissues (indicated in blue), and by elaboration of a number of proinflammatory chemok-
ines and cytokines. Within arthroskeletal tissues, synovial hyperplasia begins. Viral replication and 
host immune responses cause myalgia and polyarthralgia in distal joints. Chronic CHIKV disease can 
persist for months or years after acute infection but is often limited to more distal joints. Chronic 
disease is likely mediated by persistent virus and inflammation. Possible sites of CHIKV persistence 
include endothelial cells in the liver and other organs, mononuclear cells in the spleen, macrophages 
within the synovial fluid and surrounding tissues, and satellite cells within the muscle (indicated in 
purple). Within the chronically infected joint, the continued presence of a subset of infiltrating cells 
(mainly macrophages, monocytes, and lymphocytes) and specific proinflammatory mediators (IL-6, 
IL-8, and MCP-1) within the synovial fluid likely contribute to prolonged inflammatory disease. Chronic 
joint pathology resembles that in rheumatoid arthritis, with significant hyperplasia and angiogenesis. 
This model is based on human and animal studies.
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humans are the primary amplifying host during urban epidemics, 
rapidly deployed vaccination of at-risk populations could curtail 
mounting epidemics. Furthermore, immunization of tourists and 
military personnel traveling to endemic or epidemic areas would 
protect travelers and decrease importation of the virus to naive 
populations. Various CHIKV vaccine strategies have been inves-
tigated, with many in preclinical and clinical studies (reviewed in 
ref. 178). Here, we summarize various vaccine candidates, focus-
ing on those that have advanced to human studies (Table 4).

Live-attenuated vaccines offer effective and lasting immu-
nity, often with a single dose and low cost of production. The 
first reported live-attenuated CHIKV vaccine is strain 181/25 
(also called TSI-GSD-218), which was developed by passaging 
of clinical isolate AF15561 extensively in cell culture (Table 
4 and ref. 179). Strain 181/25 is attenuated but immunogenic 
in both mice and NHPs (138, 179, 180), and vaccination with 
181/25 protects NHPs against CHIKV challenge (179). Strain 
181/25 showed no adverse effects in a phase I clinical trial 
(181), and although it was highly immunogenic in phase II 
clinical trials, approximately 8% of subjects developed mild, 
transient arthralgia (182). Attenuation of 181/25 is attribut-
able to only two point mutations in E2 (T12I and G82R) (180); 
the mutation at residue 82, which enhances glycosaminogly-
can binding (74, 75), is the dominant attenuating factor (180). 
However, residue 82 is also a major determinant of CHIKV 
clearance, as it influences neutralization by CHIKV-specific 
antibodies (150). Indeed, reversion at residue 82 in 181/25 
was observed in mice (75, 180) and humans (183), indicating 
instability of attenuation and raising concerns about safety. 
Therefore, other strategies for development of live-attenuated  
vaccines for CHIKV have been investigated.

One such live-attenuated candidate, CHIKV/IRES, is a vaccine 
that contains an internal ribosomal entry site (IRES) in place of the 
subgenomic promoter (Table 4). This modification decreases the 
expression of viral structural proteins (184, 185), which attenuates 
replication in mammalian cells and prevents replication in mos-
quito cells, as the IRES is not functional in insect cells (184). The 
CHIKV/IRES vaccine is safe, highly immunogenic, and efficacious 
in mice and NHPs (184, 185), while remaining attenuated (186). 

nature of CHIKV disease and its associated economic burden are 
important considerations for the development of specific treat-
ments. To date, no licensed anti-CHIKV therapeutics or vaccines 
are available, and only palliative care using analgesics, antipyret-
ics, and NSAIDs is recommended to alleviate symptoms. As tradi-
tional vector control has met with only limited success in CHIKV 
containment, there is a significant need for safe, efficacious, and 
economical CHIKV treatments or vaccines to mitigate viral spread 
and limit disease burden.

A number of therapeutic strategies to combat CHIKV have been 
investigated (reviewed in ref. 166). To date, ribavirin is the only 
FDA-licensed drug tested in humans that effected a positive out-
come in CHIKV-infected patients (167). High-throughput screen-
ing of chemical libraries (168–171), as well as synthesis of designer 
drugs (172, 173), has identified promising candidate CHIKV antivi-
rals. Anti-CHIKV therapeutics also have been discovered or devel-
oped to directly target the viral replication cycle, including stag-
es of entry, protein synthesis, genome replication, or enzymatic 
functions. Drugs indirectly targeting host factors required for effi-
cient replication also have been identified (reviewed in ref. 166). 
Although compound discovery has unearthed a number of putative 
CHIKV antivirals, further testing in animal models and humans is 
required for clinical advancement of these drugs.

Since humoral immune responses control CHIKV infection 
and persistence (104, 125, 137, 147, 150, 151) and neutralizing 
CHIKV antibodies are often protective across CHIKV clades as 
well as other alphaviruses (152, 161), the use of monoclonal anti-
bodies as prophylactics or therapeutics against CHIKV may offer 
another avenue for CHIKV control (reviewed in ref. 174). Passive 
transfer of antisera (104, 106, 175) or isolated monoclonal anti-
bodies protects against CHIKV disease in mice (160, 161, 176) 
or NHPs (177). Furthermore, in postexposure therapeutic trials, 
monoclonal antibodies protect against CHIKV disease in mice, 
even when administered at late times of infection (160, 161), sug-
gesting that immunotherapy would be effective for treatment of 
CHIKV infection. However, the best strategy to prevent further 
spread of CHIKV is likely to be an effective vaccine. As evidence 
suggests that a single vaccine against CHIKV should protect 
against all CHIKV strains and provide lifelong immunity, and 

Table 4. CHIKV vaccines evaluated in clinical trials

Vaccine Platform CHKV strain Description Phase of clinical research References
TSI-GSD-218 Live-attenuated 181/25 (Asian) Derived from parental strain AF15561 by serial passaging in cell 

culture; highly immunogenic with single immunization; concerns over 
reversion of attenuation, which is mainly dependent on single point 
mutation; 8% of subjects (phase II) experienced transient arthralgia

Halted after phase II 179, 182, 183

VRC-CHKVLP059-00-VP VLP 37997 (WA) Virus-like particles composed of structural proteins expressed 
from DNA plasmid-transfected HEK-293 cells; very safe and highly 

immunogenic; but multiple doses required; expensive manufacturing 
costs; expression in insect cells may reduce costs

Phase II in progress 175, 192, 199, 200

MV-CHIK VLP vectored La Réunion 06-46 
(ECSA)

Live-attenuated measles virus (Schwarz strain)–vectored vaccine 
expressing VLP; multiple doses required for complete seroconversion

Phase II in progress 195, 196

CHIKV-IRES (V1/V2) Live-attenuated LR2006-OPY1 (ECSA) Attenuation due to insertion of encephalomyocarditis virus IRES 
sequence that limits structural protein expression; cannot replicate in 

mosquitoes; highly immunogenic and maintains attenuation

Phase I complete; projected 
for phase II

184–186

IRES, internal ribosome entry site; MV, measles virus; VLP, virus-like particle; HEK, human embryonic kidney.
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a number of difficulties will need to be overcome. The sporadic 
nature of CHIKV epidemics makes it difficult to identify at-risk 
populations for phase III clinical trials. As CHIKV epidemics have 
mostly occurred in developing nations, the most utilitarian vac-
cine should induce a robust and durable immune response with a 
single dose at a low cost. However, even though vaccination is the 
most promising means to protect people in regions with endemic 
CHIKV, the challenging balance between vaccine safety, immuno-
genicity, and economical constraints of production may impede 
CHIKV vaccine development and licensing.

Conclusion
As CHIKV continues to emerge and disseminate, millions of peo-
ple will experience the significant burden of chronic, incapacitat-
ing CHIKV disease. Our current understanding of CHIKV patho-
biology indicates that CHIKV-elicited immune responses serve 
both protective and pathogenic functions, with several types of 
immune cells contributing to CHIKV-induced rheumatic disease. 
The duplicity and varied manifestations of CHIKV immunopathol-
ogy pose challenges to the development of effective treatments. 
Although recent studies have contributed to a better understanding 
of the basic biology of CHIKV replication and disease, future work 
on virus-vector interactions, molecular mechanisms of viral repli-
cation, careful deconstruction of the multifaceted CHIKV-induced 
immune responses, and development of therapeutic interventions 
will be required to combat CHIKV transmission and illness.
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Other live-attenuated CHIKV vaccine strategies include deletions 
in viral genes (187, 188), modification of glycosaminoglycan bind-
ing (138), alphavirus chimeras (189, 190), and codon alteration 
(191). As reversion is a major safety concern with live-attenuated 
vaccines, a CHIKV vaccine containing a combination of attenua-
tion strategies could diminish reversion and pathogenicity.

Virus-like particles (VLPs) represent another promising vac-
cine strategy (Table 4). VLPs are generated by expression of the 
CHIKV structural cassette from a DNA expression plasmid trans-
fected into human cells (175). The expressed structural proteins 
form particles that are indistinguishable from intact virions but 
are replication-incompetent because of the lack of genomic vRNA 
(175). In both mice and NHPs, the VLP vaccine elicits high-titer 
neutralizing antibodies that are protective against heterologous 
strains (175). In a three-dose escalation phase I trial, the VLP vac-
cine was safe, well tolerated, highly immunogenic, with a 100% 
seroconversion rate in all dose cohorts after booster immunizations 
(192), and cross-protective against multiple CHIKV strains (193). 
Although the VLP vaccine is currently in phase II clinical trials 
(NCT02562482, ClinicalTrials.gov), concerns over cost and man-
ufacturing efficiency have prompted other strategies to generate 
VLPs. One uses a recombinant baculovirus-insect cell expression 
system that yields VLPs eliciting strong neutralizing antibodies, 
which are protective in mice (194). Another VLP vaccine strategy 
uses a recombinant, live-attenuated measles virus (MV) vector 
(MV-CHIKV) (Table 4 and ref. 195). In preclinical studies using 
Ifnar–/– mice, MV-CHIKV elicited robust and cross-neutralizing 
immune responses that protect against lethal challenge (195). In 
a phase I clinical trial of MV-CHIKV, neutralizing antibodies were 
detected in a dose-dependent manner with 100% seroconversion 
after booster immunization in all three dose cohorts, despite the 
presence of preexisting antivector immunity (196). Although the 
vaccine was reasonably tolerated at the two lower doses, 58% of 
the high-dose cohort exhibited adverse events related to vaccina-
tion (196). This vaccine is the third CHIKV vaccine to enter phase 
II clinical trials (NCT02861586).

In addition to these vaccine candidates, other recent CHIKV 
vaccine approaches investigated in preclinical studies include 
inactivated particles, subunit, and DNA- and recombinant virus–
vectored vaccines (reviewed in ref. 178). Although substantial 
progress has been made in the development of CHIKV vaccines, 
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