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Introduction
Prostate cancer (PCa) is the most frequent cancer type diagnosed 
in men, with a yearly incidence of approximately 382,000 cases, 
resulting in 89,000 deaths in 2008 in Europe alone (1). The mor-
tality of men diagnosed with PCa varies greatly between coun-
tries but, on average, has declined over the years. This decline 
is attributed to both increased detection of latent disease and 
improved PCa treatment (2). Additionally, the increase in life 
expectancy contributes to a rising number of elderly individuals 
with diagnosed PCa. Indeed, around 30% of men over the age 
of 65 has been estimated to have PCa; however, only a minority 
of these patients will experience invasive PCa during their life-
times. Thus, it is critical to differentiate between aggressive and 
nonaggressive forms of PCa (3).

PCa diagnosis is typically performed via classical rectal exami-
nation. This technique is rather inefficient, with an estimated 23%–
45% of PCas being missed and roughly 50% of PCa being diag-
nosed at an advanced stage (4). Suspected PCa patients usually 
undergo prostate biopsies or serial biopsies for active surveillance. 
However, biopsy analysis may underestimate the grade or extent of 
pathology or miss tumor tissue altogether as a consequence of the 
multifocal nature and heterogeneity within many prostate tumors. 
This holds true both for strict morphological analysis and detection 
of cancer-specific biomarkers within biopsies. In contrast, biomark-
ers that are released in blood or urine are more likely to represent 
the status of the entire prostate. Hence, there is urgency for the dis-
covery and implementation of blood- or urine-borne markers that 
reliably indicate PCa (5). Such biomarkers would make active PCa 
surveillance less invasive, thereby reducing costs and eliminating 
the potential complications of biopsy sampling.

Several blood-derived molecular biomarkers for PCa have 
become available over the years (6). Currently, prostate-specific 
antigen (PSA) is the most extensively used first-line biomarker 
in blood for diagnosis of PCa (7). PSA is a protease produced by 
prostate epithelial cells. Its major known physiological function 
is to liquefy the semen coagulum. As an apically secreted prod-
uct, PSA is mainly deposited into the prostate ducts, but it can 
also be detected in small quantities in the blood of healthy men. 
Transformed PCa cells lose cell polarity, increasing the release 
of PSA into blood; thus, high blood PSA titers may be indicative 
of PCa. However, only 25%–40% of men with elevated PSA lev-
els are actually diagnosed with PCa after prostate biopsy (8, 9), 
and although high PSA levels may indicate small, localized, and 
low-grade malignant tumors, they may also result from benign 
prostatic hyperplasia (10). Furthermore, PSA levels may rise as 
a consequence of prostatitis or urinary tract infection and are 
highly variable between healthy individuals (11–13). Conversely, 
between 20%–40% of PCa are missed by PSA testing, and popu-
lation-based screening for PSA reduced PCa mortality only by an 
estimated 20%. Tests that determine the ratios of distinct molec-
ular forms of PSA — including pro-PSA, free PSA, and total PSA 
— may more accurately detect PCa; however, these measurements 
suffer from similar limitations as classical serum PSA tests (14, 15). 
Thus, PSA tests lack sufficient specificity to efficiently discrimi-
nate between benign prostate disease and aggressive PCa (11–14, 
16), necessitating intense efforts to identify novel biomarkers that 
are more specific for PCa.

PCa antigen 3 (PCA3) is a PCa-specific antigen that is over-
expressed in greater than 90% of PCa and can also be detected in 
urine (17, 18). PCA3 is a noncoding RNA (ncRNA) with a very short 
ORF that has been widely evaluated for its diagnostic potential. A 
clinical test measuring PCA3 in urine, normalized to less variable 
mRNA encoding for PSA, has been introduced (19). Compared 
with PSA, PCA3 may have higher specificity for the prediction of 
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fusion gene transcript TMPRSS2:ERG have a high specificity but 
low sensitivity (20). Combinational testing of PCA3 and TMPRSS2: 
ERG (22) or multiplex testing of TMPRSS2:ERG together with 
transcripts of PCA3, GOLPH2, and SPINK1 (23) improved the 
detection of PCa; however, such tests remain unreliable, and the 
search for better PCa markers in either blood or urine is ongoing. 
Herein, we discuss blood- and urine-borne prostate-specific extra-
cellular vesicles (EVs, known as prostasomes) as a potential source 
of biomarkers for PCa.

Prostasomes
Prostasomes are EVs that range in diameter between 50 nm and  
0.5 μm and are released into the extracellular environment by pros-
tate epithelial cells (Figure 1). They were first described in 1982 as 
vesicles with a capacity to promote progressive motility of sperm 
cells (24). Other proposed physiological activities of prostasomes 
include regulation of sperm cell capacitation, acrosome reaction, 
and immune suppression within the female reproductive tract (9, 
25). The majority of prostasomes constitutes 50–100 nm vesicles 
that are formed in prostate epithelial cells by inward budding of endo-
somal delimiting membranes. These multivesicular endosomes  
(MVEs) have also been referred to as storage vesicles (26, 27). Pros-
tasomes are released into the lumen of the prostatic ductal system 
of the prostate gland as a consequence of MVE fusion with the api-
cal plasma membrane of the epithelial cell (Figure 1). Because of 
their derivation from MVEs, prostasomes can be regarded as the 
equivalent of exosomes produced by other cell types (28). Impor-
tantly, storage vesicles in prostate epithelial cells are not the exclu-
sive source of EVs in seminal plasma. Vesicles may also derive by 
direct shedding from the prostate epithelial cell plasma mem-
brane, an EV type referred to as microvesicles, and these too can 
be considered true prostasomes (Figure 1). In addition, seminal 
plasma contains EVs from other sources within the male genital 
tract, including the epididymal ducts, vesicular glands, and bul-
bourethral glands (9). Thus, although the term prostasomes has 
been generally applied to all EVs that can be isolated from semen, 
only part of the EV population in semen truly derives from the 
prostate. Prostate secretions, including prostasomes, are mixed 
with other components of seminal plasma and sperm cells during 
ejaculation (26, 29) but also leak into urine (see below).

Like all EVs, prostasomes are composed of cytosolic contents 
surrounded by a lipid bilayer containing membrane proteins, and 
this orientation is dictated by the cytosolic outward direction of 

PCa, but its sensitivity is relatively low and indicatory concentra-
tions providing an optimum balance between sensitivity and spec-
ificity are still debated (20).

Gene fusion transcripts have also been used as PCa mark-
ers. Chromosomal rearrangements are a common feature of car-
cinomas, and frequent gene fusions in PCa include androgen- 
regulated gene transmembrane protease serine 2 (TMPRSS2) and 
two ETS transcription factors, ETV1 and the v-ets erythroblastosis 
virus E26 oncogene homolog (ERG) (21). Urine-based tests of the 

Figure 1. Morphologic changes and prostasome release during PCa pro-
gression. (A) Normal prostate epithelium with secretory luminal cells and 
basal cells, which are found between the luminal cells and the underlying 
basal lamina (neuroendocrine cells are not shown). Epithelial cells release 
prostasomes into the prostatic duct. Prostasomes can be formed by 
inward budding of MVE and are then secreted as exosomes by fusion of 
the MVE delimiting membrane with the plasma membrane. Alternatively, 
prostasomes may represent microvesicles (MV), which are formed by 
outward budding and pinching directly from the plasma membrane. (B) 
Intraepithelial neoplasia is characterized by loss of basal cells, neoplasia 
of luminal cells, and an intact basal lamina. (C) Metastasis, characterized 
by loss of the basal lamina, loss of polarity of luminal cells, and release of 
prostasomes into the underlying tissue and blood. The release of apoptotic 
bodies and intact cells is not shown.
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immune system to produce prostasome-directed autoantibod-
ies, which can be detected in blood from PCa patients (53, 60). 
However, there is no consensus on whether titers of prostasome-
directed antibodies correlate with PCa grade or metastasis (54, 62, 
63), leaving little evidence that prostasome-specific antibodies 
can be used as reliable prognostic markers for PCa.

Proteins that are exclusively expressed by PCa cells — as com-
pared with healthy prostate epithelial cells or any other cell type —  
and are incorporated into prostasomes have yet to be identified. 
The detection of prostasomes in blood is further complicated by 
the concomitant presence of EVs from many other sources. Nev-
ertheless, detection of high levels of a single protein, even when 
ubiquitously expressed, in a total EV fraction from blood may 
be sufficient to detect PCa, as exemplified by a study in which 
the antiapoptotic protein survivin was found to be significantly 
increased in EVs isolated from the plasma of PCa patients com-
pared with plasma from patients with preinflammatory benign 
prostate hyperplasia or healthy controls (64). In another study, the 
tumor suppressor PTEN was approximately 10-fold higher in EVs 
isolated from PCa patients compared with normal subjects (65). 
However, by colocalizing multiple markers on the same EV in a so 
called proximity ligation assay, it may be possible to detect PCa- 
derived prostasomes in blood with greater sensitivity compared 
with single-marker analyses (55). Tavoosidana and colleagues (55) 
first recruited prostasomes with anti–aminopeptidase-N antibod-
ies, after which the coincident presence of four prostasomal pro-
teins was probed with DNA-conjugated antibodies to generate 
an amplifiable reporter. With this assay, PCa patients, especially 
those with high prostatectomy Gleason scores, were found to have 
elevated concentrations of prostasomes in their blood compared 
with healthy controls, confirming the potential of combinational 
analysis of blood-borne prostasomal proteins for PCa diagnosis. 
Prostasome proteins in serum may also be used to follow therapy 
efficacy in patients. For example, P-glycoprotein encoded by multi-
drug resistance protein 1 (MDR1) in blood EVs was relatively higher 
in docetaxel-resistant patients than in therapy-naive patients (66).

Prostasome-associated PCa protein markers in 
urine
Prostate fluid constitutively leaks into urine and prostate massage 
(usually as a consequence of digital rectal examination) before 
urine collection increases the amount of prostasomes in urine (37, 
67–69). The presence of prostasomes in EV fractions isolated from 
urine was confirmed by detection of prostate-specific proteins, 
including prostate-specific membrane antigen (PSMA), prostatic 
acid phosphatase, and prostate transglutaminase (67, 70–73). One 
advantage of collecting EVs from urine, as compared with blood, is 
that such isolates are more enriched in prostasomes relative to other 
constituents, although tissues within the urogenital system other 
than the prostate, including the kidney (74) and bladder (75), also 
contribute EVs to urine. Moreover, urine also contains intact PCa 
cells and PCa cell–derived apoptotic bodies (74). Cells and most 
apoptotic bodies are considerably larger than prostasomes and can 
thus be easily separated from prostasomes by differential centrif-
ugation. Proteomic profiling of EVs isolated from urine identified 
hundreds of proteins, many of which may indeed associate with EVs 
from sources other than the prostate or non–EV-related particles 

budding during their formation, irrespective of whether this occurs 
at MVEs or at the plasma membrane. The protein composition of 
prostasomes isolated from seminal plasma has been analyzed by 
mass spectrometry, amongst other techniques (9, 30, 31). Over 
400 distinct proteins have been identified, although some of these 
might originate from EVs that derive from sources other than the 
prostate or they may constitute contaminants. Many of the identi-
fied proteins, including aminopeptidase N (29), tissue factor (32), 
and dipeptidyl peptidase IV (33), are not exclusively expressed by 
prostate epithelial cells and may also associate with EVs other than 
prostasomes (9). Identification of prostate-specific membrane 
proteins, including TMPRSS2, prostate-specific transglutaminase, 
and prostate stem cell antigen (PSCA), confirmed the prostatic ori-
gin of at least part of the isolated EVs at the molecular level.

Prostasomes and PCa
In general, both healthy and diseased cells shed EVs, although 
their release may be enhanced upon malignant transformation 
(34–37). Tumor cell–derived EVs have been described for differ-
ent types of cancer (38) and are reported to contain cancer-spe-
cific content, including oncoproteins, mutant transcripts, and 
cancer-specific microRNAs (miRNAs) (39, 40). Both neoplastic 
and metastatic PCa cells have been demonstrated to release pros-
tasomes (27, 36, 41–46). Observations that prostasomes isolated 
from PCa patients stimulated in vitro tumor cell proliferation and 
invasion are consistent with the general idea that EVs from tumor 
cells can stimulate tumor growth and metastasis and can modu-
late surrounding cells to promote tumor growth (9, 47–50).

The general concept that EVs isolated from blood can serve as 
biomarkers for cancer was recently validated for pancreatic cancer 
(51). In this study, glypican-1–carrying exosomes were detected 
in the serum of pancreatic cancer patients with absolute specific-
ity and sensitivity, although it should be noted that other tumors, 
including breast cancer and gliomas, also express glypican-1. KRAS 
is a frequently mutated gene in pancreatic cancer, and mutant 
KRAS mRNA was found in glypican-1–carrying exosomes from all 
tested patients with KRAS mutations (51). Findings that EVs from 
cancer cells have unique, cancer-specific contents (52) — together 
with the observation that prostasomes are present in both the 
blood and urine of PCa patients (53–56) — suggested the hypothe-
sis that prostasomes may provide useful markers of PCa. This idea 
was supported further by early studies in which proteome and RNA 
profiles of EVs isolated from cultured prostate tumor cell lines and 
immortalized prostate epithelial cells were compared, identifying 
several potential candidate biomarker proteins for PCa (44, 57–59).

Prostasome-associated PCa protein markers in 
blood
The first attempts to demonstrate the presence of prostasomes 
in a PCa patient’s blood focused on the detection of anti-pros-
tasome antibodies (53, 54, 60). In healthy individuals, excretory 
ducts form a closed compartment with the basement membrane 
surrounding the prostate epithelial cells, thereby hiding pros-
tasomes from the immune system (61). The loss of cell polarity in 
prostate malignancies (61) allows release of prostasomes into the 
interstitial space and into circulation (refs. 46, 55, and Figure 1). By 
crossing these barriers, prostasomes may stimulate the adaptive 
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and separated from cells and large apoptotic bodies by differential 
centrifugation were found to contain splice variant transcripts of 
the anterior gradient 2 gene (AGR2), which had greater specificity 
than serum PSA as a marker for PCa (90). Other studies demon-
strated the presence of both TMPRSS2:ERG and PCA3 in EV frac-
tions from the urine of PCa patients (67, 69). In a recent study, a 
molecular signature (EXO106 score), which is based on the com-
bined normalized expression of ERG and PCA3 isolated with exo-
somes from urine samples from a cohort of 195 patients, was used 
to predict PCa (91). It should be noted that the methodology for 
exosome isolation in this study does not exclude the presence of 
sources other than exosomes. The reported negative and positive 
predictive values of the EXO106 score for high-grade PCa were 
97.5% and 34.5%, respectively (91). TMPRSS2:ERG was found 
in EVs isolated from the blood of human PCa xenograft–bearing 
mice (92), supporting the idea that such transcripts may also be 
traceable in EVs from the blood of PCa patients. Importantly, 
mRNA testing could potentially be used to track cancer-specific 
(rare) genomic mutations or reorganizations in a background of 
WT mRNA sequences by using digital PCR approaches, as has 
been exemplified for the detection of mutant isocitrate dehydro-
genase 1 (IDH1) transcripts in EVs from the cerebrospinal fluid of 
glioma patients (93).

Prostasome-associated miRNA PCa markers
miRNAs regulate the expression of protein-coding genes at the 
translational level (38, 94), and miRNA expression is altered by epi-
genetic repression, genomic deletion, amplification, or mutation in 
many types of cancer, including PCa (95, 96). The ability of some 
miRNAs to inhibit translation of oncogenes and tumor suppressors 
may explain their involvement in carcinogenesis. It appears that 
each tumor type is characterized by a unique miRNA expression 
profile (38, 49, 97–99), and aberrant expression of miRNAs in can-
cers offers the opportunity to use miRNA from tissue biopsies as 
biomarkers in cancer diagnosis, prognosis, and treatment response 
(100). miRNAs are also found extracellularly in blood, and anal-
ysis of blood-borne extracellular miRNA provides a less invasive 
means to screen patients for tumor-specific miRNA profiles com-
pared with traditional biopsies. Indeed, changes in composition of 
secretory miRNAs have been reported for many different types of 
cancer (99–101). Selected sets of extracellular miRNAs in blood are 
contained by EVs (102–104); however, the majority of extracellular 
miRNAs in plasma is associated with membrane-free protein com-
plexes containing Argonaute (104) and nucleophosmin (105), and 
to some extent with HDL particles (106).

Analysis of whole serum or plasma samples from PCa patients 
revealed differential expression patterns of extracellular miRNAs, 
identifying more than 50 miRNAs as potential blood-based PCa 
biomarkers (99, 107–112). In these studies, upregulation of miR-
141 and miR-375 was most consistently observed in plasma or 
serum of PCa patients. It has been suggested that panels of two 
or more circulating miRNAs may reliably distinguish PCa patients 
from patients with benign prostatic hyperplasia and healthy 
controls (103, 113, 114). Most studies on extracellular miRNA in 
plasma did not discriminate between miRNA in EVs and other 
forms of circulating miRNAs. Furthermore, it should be kept in 
mind that when EVs were isolated from blood either by ultracen-

(68, 76–79). In a recent study using mass spectrometry, the protein 
compositions of EVs isolated from 16 preoperative urine samples 
of PCa patients were compared with those from 15 healthy individ-
uals, and as many as 246 proteins were found to be differentially 
expressed (56). Of these, 17 proteins displayed sensitivities above 
60% at 100% specificity at a detection threshold with positive val-
ues for patient samples and negative values for control samples. The 
transmembrane protein TM256 had the highest sensitivity (16 of 17 
patients), and it was suggested that by combining this protein with a 
panel of some of the other identified markers, it might be possible to 
fully differentiate PCa patients from healthy individuals. Although 
these findings require confirmation in larger cohorts of patients, 
this study very strongly supports the feasibility of developing highly 
sensitive and specific PCa markers based on urinary EVs. It should 
be noted that TM256 and the other proteins that were enriched in 
the EV fraction from PCa patient urine are ubiquitously expressed, 
and their increased expression may be explained through elevation 
of EV release upon transformation of prostate epithelial cells.

Prostasome-associated mRNA and ncRNA PCa 
markers
The general concept that EVs carry RNA molecules and may serve 
as a vehicle for RNA transfer between cells was first demonstrated 
for mast cell–derived EVs (80). The idea that EVs elicit epige-
netic effects by transferring selected mRNA and miRNA species 
between cells has revolutionized concepts concerning the mech-
anisms of intercellular signaling, including the interactions of 
tumor cells with surrounding tissues. These ideas have also led to 
investigations into the utility of EV-associated RNAs as biomark-
ers for disease. Because cellular RNA profiles are unique for each 
type of cancer, their EVs can be expected to contain quantitatively 
and qualitatively distinct RNA signatures. Indeed, EVs from many 
sources were found to contain selected sets of RNA molecules, 
including mRNA, miRNA, and other ncRNAs (28). Packaging of 
RNAs in EVs is an active, nonrandom process, and the underly-
ing molecular mechanisms are just beginning to emerge (81). For 
example, it has been proposed that sumoylated heterogeneous 
nuclear ribonucleoproteins (hnRNPs) facilitate incorporation 
of selected miRNAs by binding of consensus motifs at their 3′ 
end (82). Posttranscriptional 3′ uridylation may also help direct 
ncRNAs into EVs (83). Consensus motifs for RNA sorting into EVs 
have also been proposed for mRNAs (84–86). Incorporation of 
mRNA into EVs may also involve their 3′-untranslated region (87) 
or interaction with mRNA-specific miRNAs (84). Further investi-
gations will be required to fully define the mechanisms by which 
specific RNAs are incorporated into EVs.

The potential of mRNAs from blood-derived EVs to serve as 
cancer biomarkers is illustrated by studies of patients with colorec-
tal cancer (88) and glioblastoma (89). To our knowledge, changes 
in mRNA content of EVs isolated from blood of PCa patients have 
not yet been reported; however, several studies have examined 
mRNA in EVs isolated from urine. As discussed above, transcripts 
for TMPRSS2:ERG, PCA3, GOLPH2, and SPINK1 have all been 
detected in the urine of PCa patients with some predictive value 
for PCa (20, 22, 23, 67). In most of these studies, it was not clear 
whether these transcripts were associated with cells, apoptotic 
bodies, or EVs. EVs that were isolated from urine of PCa patients 
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for encapsulation of miRNA by EV membranes, but Argonaute/
miRNA complexes are also resistant to RNase if protease is not 
applied first (104). In a study by Bryant and colleagues (103), 
EV-associated miRNAs were isolated using filtration and RNAse 
protection assays. They identified 11 miRNAs that were signifi-
cantly increased and one miRNA that was significantly decreased 
in the plasma-derived EV fraction of PCa patients compared with 
healthy controls. In the same study, 16 miRNAs were increased 
in PCa patients with metastatic compared with nonmetastatic 
disease. Of these, miR-141 had already been identified in other 
studies as a potentially interesting blood-borne biomarker for 
metastatic PCa (115). Li and colleagues (116) isolated EVs using a 
commercial EV precipitation kit and identified three discriminat-
ing miRNAs. These clinical studies were all conducted with small 
numbers of subjects, and studies of large cohorts are required to 
further investigate the value of extracellular, circulating miRNAs 
as biomarkers for PCa.

miRNA has also been analyzed in urine samples. PCa cells 
can be collected by low-speed centrifugation from urine that is 
collected after transrectal examination/massage, and such non-
invasive “liquid” biopsies have obvious advantages over invasive 
tissue collection. For total urine samples, including cells, potential 
miRNA biomarkers that differentiate PCa and benign prostatic 
hyperplasia have been reported (117, 118). In cells isolated from 
urine, miR-107 and miR–574-3p were found to be elevated in PCa 
patients compared with controls, and these miRNAs appeared to 
have a higher specificity for PCa than PSA-normalized urinary 
PCA3 (103). In cell-free urine, miRNAs were significantly enriched 
in EVs, and urinary EVs have been proposed to be a good source of 

trifugation, ultrafiltration, or precipitation techniques, particulate 
RNA/protein complexes, such as Argonaute/miRNA complexes, 
might have been coisolated with EVs (28). Definitive proof of 
association with EVs requires separation of membranes from non-
membranous complexes by equilibrium density gradient fraction-
ation; generally, such analysis has not been performed in previous 
studies. In some studies, RNAse protection is taken as evidence 

Table 1. PCa-associated proteins and RNA molecules in EV 
isolates from blood plasma or serum or urine

PCa markers in EV fractions from blood plasma or serum
Molecule Marker Reference
Protein Surviving 64

PTEN 65
P-glycoprotein 66

miRNA 21; 375; 574 110
107; 130b; 141; 181a-2; 301a; 326; 331-3p;  

373; 432; 484; 574-3p; 625;2110
100

PCa markers in EV fractions from urine
Protein ADIRF; ARL8B; ATP6V0C; LAMTOR1; LCP1; PARK7;  

RAB2A; RAB3B; RAB3D; RAB6A; RAB7A; S100P;  
SLC2A13; STEAP4; SYTL4; TM256; TSPAN6

56

mRNA/ncRNA AGR2 splice variants 85
PCA3; TMPRSS2:ERG 67, 69

PCA3; ERG 91

 

Figure 2. Isolation of prostasomes in blood 
and urine from other EVs and non–EV- 
related markers for PCa analysis. During PCa 
development, prostasomes may increase in 
number and change their content. Protein and 
RNA markers in prostasomes can be analyzed 
separately from noise signals after prostasome 
immunoisolation employing prostasome- 
specific membrane proteins.
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miRNA biomarkers (119), not only for PCa but also for kidney dis-
ease (74) and bladder cancer (120, 121). In another recent study, 
miR–483-5p was also found to be elevated in cell-free urine from 
PCa patients (122). However, it has remained unanalyzed whether 
these cell-free miRNAs in urine are associated with EVs.

Conclusions
The limited predictive value of PSA as a diagnostic marker for 
PCa has led to an intense search for novel biomarkers in blood 
or urine with better sensitivity and specificity. Screening the 
molecular composition of EVs isolated from either blood or urine 
has revealed candidate proteins and RNA molecules that, upon 
further selection, may serve as biomarkers for PCa diagnosis, 
differentiation, prognosis, and epidemiology (Table 1). Because 
PCa is highly heterogeneous, both within individual tumors and 
between patients, biomarker multiplex testing will increase the 
sensitivity and specificity of EV-based PCa diagnosis. The devel-
opment of such markers will require the analysis of large patient 
cohorts. In addition to increasing cohort size, it will be necessary 
to increase the purity of EV isolates. So far, only a few studies have 
separated EVs from other constituents in blood or urine, and no 
study has separated prostate epithelial cell–derived prostasomes 
from other EVs within blood or urine. Plasma contains EVs from 
nearly all tissues, and it is likely that prostasomes constitute only 
a minority population, even in PCa patients. Similarly, urine con-
tains EVs from tissues within the entire urogenital tract. More-
over, EVs that are isolated by ultracentrifugation, ultrafiltration, 
or precipitation techniques may still be contaminated with pro-
tein complexes that also carry RNA (28). Prostasomes contain 
prostate-specific membrane proteins, and these can be used as 
targets for immune-isolation techniques to separate prostasomes 
from other constituents. The immune isolation of EVs from PCa 
cell line culture media using anti–PSMA-coated beads provided a 
proof-of-principle that immune isolation could be used to enrich 
for prostasomes (123). Subsequent analysis of such isolated pros-
tasomes for the presence of PCa-specific proteins or RNA mole-
cules may not only enhance reproducibility but also the sensitiv-
ity and specificity of PCa analysis (Figure 2).

PCa foci are often heterogeneously distributed within the pros-
tate and may be missed by prostate biopsy sampling. In contrast, 
prostasomes sampled from either blood or urine are representative 

of the overall condition of the prostate and PCa metastasis, and their 
use as a source of PCa biomarkers has the advantage of being semi- 
or noninvasive. Furthermore, mutant transcripts can be detected 
and quantified in a background of WT transcripts from healthy tis-
sue and, thus, mirror the genetic diversity within a tumor (124).

Analysis of isolated prostasomes has additional advantages 
over the analysis of their originating PCa cells, which may also be 
isolated from blood or urine. First, EVs are extremely stable, and 
RNA within their lumen can resist exogenous RNAse. Second, EVs 
are known to incorporate selected sets of proteins and RNA mol-
ecules, and the molecular composition of prostasomes probably 
reflects their capacity to influence PCa growth and metastasis. 
Thus, EVs, including prostasomes, can be considered convenient 
packages that contain constitutively expressed prostate-specific 
proteins that can be employed for immune isolation, as well as 
PCa-specific molecular fingerprints that can serve as readouts for 
the status of their originating cells (Figure 2). Absolute values of 
single PCa biomarkers have often proven to be of little diagnos-
tic value. This is particularly true for urine-derived markers, as 
their concentrations are strongly influenced by external factors 
such as prostate massage and the timing, frequency, and volume 
of urination. Finally, an additional advantage of the multicompo-
nent composition of prostasomes is that associated PCa-specific 
markers can easily be normalized using constitutively expressed 
constituents within the same isolate.

The already-identified prostasome-associated molecules 
or combinations of these molecules need to be tested in large 
patient cohort studies to determine their specificity and sensitivity 
for diagnosis of PCa. We propose that immune isolation of pros-
tasomes from either blood or urine may further increase the speci-
ficity and sensitivity of such markers and aid in the identification of 
novel prostasome-associated PCa-specific (mutant) RNA markers.
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