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Introduction
Almost all cardiovascular (CV) variables that have been assessed at 
different times of day and night in humans have been found to have 
a day/night pattern, including blood pressure (BP) (1–3), heart rate 
(HR) (3), circulating catecholamines (4), blood coagulation mark-
ers (5), and vascular endothelial function (6). Moreover, epidemio-
logical data reveal a robust morning increase in adverse CV events, 
including stroke (7, 8), myocardial infarction (9–11), serious ven-
tricular arrhythmias (12), and sudden cardiac death (refs. 11, 13, and 
Figure 1). Typical morning behaviors (e.g., arousal from sleep, sud-
den change in posture after overnight recumbency, increased activ-
ity, and psychological stress) cause increases in sympathetic tone, 
vasoconstriction, peripheral arterial resistance, HR, BP, and plate-
let aggregability, and decreases in thrombolytic activity, parasym-
pathetic tone, and vascular endothelial function (14). These daily 
CV fluctuations arise from the negative-feedback reactions to daily 
changes in the environment or behaviors that summate with antici-
patory feed-forward effects on the CV system from the endogenous 
circadian system (Figure 2). Such CV changes in the morning may 
be advantageous in healthy individuals, but could be implicated in 
precipitating an adverse CV event in susceptible individuals (14–17).

Because of the Earth’s rotation, life on earth has evolved under 
conditions of predictable daily cycles of light and darkness. Organ-
isms arrange their daily patterns of behaviors, such as the 24-hour 
fasting/feeding and rest/activity cycles, to optimally match these 
predictable changes in the environment. An endogenous circadi-
an clock prepares the body for these anticipated daily cycles. For 
example, circulating cortisol and core body temperature increase 
during the last part of the night to prepare the metabolic and cir-
culatory systems for abrupt increases in energy expenditure and 
activity soon after awakening (18). These anticipatory changes 
imply that physiological reactions are suboptimal without the circa-

dian system appropriately priming or dampening responses based 
on time of day or night, perhaps because delays exist in some neg-
ative-feedback control systems (e.g., maximal release of cortisol 
after an acute stress can take up to 10 minutes; ref. 19).

We review the organization of the circadian system and discuss 
its role in the heart, vasculature, and blood; summarize circadian 
rhythms in resting CV physiology and especially the CV reactiv-
ity to stressors; and hypothesize how such circadian rhythms may 
relate to the established day/night pattern of adverse CV events 
(7, 9–13). We then examine how chronic disruptions of the inter-
nal clock, whether by night-shift work, airline jet lag, or social jet 
lag (20, 21), are deleterious to CV health. Finally, we highlight new 
research questions and consider the opportunities for optimizing 
timing of certain CV medications based on circadian rhythmicity 
of medication targets (chronotherapy).

Organization of the circadian system
Circadian timing of physiological function is widespread across the 
body. In humans and other mammals, the primary circadian pace-
maker is the suprachiasmatic nucleus (SCN) of the hypothalamus. 
In rodents, lesions of the SCN abolish or attenuate daily rhythms 
in locomotor activity, body temperature, BP, and HR (22–24), 
showing that these rhythms are endogenous rather than resulting 
from daily changes in behavior or environment. SCN rhythms are 
primarily synchronized to the environment by light via the retino-
hypothalamic tract (25). The SCN is an autonomous oscillator and 
cycles even in vitro almost indefinitely (26). Moreover, dissociated 
SCN cells also remain rhythmic in culture, showing that rhythmic-
ity is a cellular property (27). The SCN is critically important in 
coordinating molecular rhythms in all organs and cells across the 
body. In all nucleated cells, four families of core clock genes (Clock, 
Bmal1, Period [Per], and Cryptochrome [Cry]) form a transcription-
translation feedback loop that cycles every approximately 24 hours 
(reviewed in refs. 28–35). CLOCK and BMAL1 act as positive regu-
lators, dimerizing and initiating transcription of the Per and Cry 
genes. Translated PER and CRY proteins are negative elements in 
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and molecular signaling pathways (57, 58). Combined transcrip-
tomic and metabolic data suggest that each day the cardiomyo-
cyte cycles sequentially through an ATP generation phase to pro-
mote contractile function during the active period, then a nutrient 
storage phase towards the end of the active period, followed by a 
growth/repair phase in the rest/sleep period (59, 60).

Disruptions of the molecular clock in animals cause significant 
CV disease (61), exemplifying the importance of these rhythms. 
For instance, Bmal1 knockout in mice causes dilated cardiomyop-
athy (62) and selective Bmal1 knockout in cardiomyocytes elimi-
nates much of the rhythmic transcriptome (63), reduces stroke 
volume and ejection fraction, and causes heart failure and early 
mortality in mice (63, 64). BMAL1 is a transcription factor with 
many genome-binding sites, so some of these results may be due 
to noncircadian BMAL1 roles, such as abnormal cardiomyocyte 
metabolism (63, 64). In mice, the circadian clock also controls 
ionic balance in the heart in a healthy range by regulating rhythms 
in Kruppel-like factor 15 and thereby kChIP2 (a voltage-gated 
potassium channel), with either deficiency or excess increasing 
susceptibility to serious ventricular arrhythmias (65). Cardiomyo-
cyte-specific deletion of Bmal1 results in loss of normal circadian 
expression of the Na+ and K+ channels resulting in decreased HR 
and increased risk of arrhythmias (66), which could contribute to 
sudden cardiac death (67).

Blood vessels also exhibit circadian rhythmicity. For example, 
approximately 5% of all genes in the aorta are rhythmic (68). The 
vascular endothelium and vascular smooth muscle cells are impor-
tant in regulating vascular resistance and BP. In animals, genes 
involved in structural integrity of vascular smooth muscle cells 
exhibit circadian rhythms (69). Functionally, targeted deletion of 
Bmal1 in murine vascular smooth muscle cells blunts the circadian 
amplitudes and advances the circadian phases of systolic and dia-
stolic BP, and abolishes the circadian variation of pulse pressure (70).

The kidney is essential to long-term regulation of BP and 
approximately 13% of protein-coding genes in the kidney are 
rhythmic (41). PER1 plays an important role in BP maintenance 
by regulating aldosterone levels and affecting sodium retention 
(71–73). Bmal1-knockout mice exhibit lower BP with no circadi-
an variation (74) perhaps in part because of the arrhythmicity in 
behaviors, including locomotor activity, in mice (75, 76). Patients 
with chronic kidney disease commonly lack the normal greater 
than 10% dip in nighttime BP compared with daytime BP. This 
so-called “non-dipping BP profile” (77, 78), which is associated 
with increased risk of adverse CV events and death in people with 
hypertension (79, 80). The precise role of the circadian system in 
nondipping hypertension is yet to be elucidated.

Circadian rhythms in CV function
Dissociating circadian, behavioral, and environmental effects. To 
estimate the contribution of the endogenous circadian system to 

the feedback loop because they inhibit CLOCK::BMAL1 transacti-
vation, and in so doing, shut off their own expression. Other inter-
locked molecular pathway loops exist including the rhythmic tran-
scription of Rev-erbα and Rorα that in turn control Bmal1 expression 
rhythms (36–38). The feedback mechanism encompasses large 
protein complexes that include chromatin modifiers (39, 40), but 
is still overall poorly understood. In any given mammalian tissue, 
approximately 5%–15% of gene transcripts are rhythmic, with 
some differences in the specific cycling genes between tissues, 
with 43% of protein-coding genes being rhythmic in at least one 
tissue (41). These varied tissue clocks are normally entrained by 
the SCN via neural, endocrine, and physiological pathways (42, 
43) including autonomic nervous system projections (44), melato-
nin (45, 46), glucocorticoids (47, 48), body temperature (49, 50), 
and food cues (51, 52).

Tissue-specific circadian clocks across  
the CV system
In the heart, approximately 13% of genes and approximately 8% of 
proteins are rhythmic (53–56), particularly in growth, metabolism, 

Figure 1. The day/night pattern of adverse cardiovascular events. 
Epidemiological studies reveal that adverse cardiovascular events includ-
ing myocardial infarction (MI), sudden cardiac death (SCD), and ischemic 
stroke have increased frequencies in the morning hours compared with 
other times of the day and night (redrawn from refs. 8, 9, 11).
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at approximately 24 hours); (b) an average effect of a standardized 
behavior while controlling for any underlying circadian effects (by 
aligning data according to the period of the imposed artificial day 
length); and (c) any interaction between these effects, effectively 
determining if the responses to a behavior are different at differ-
ent times of the body clock cycle (90, 91). In humans, food tim-
ing in these protocols does not appear to affect central circadian 
rhythms (18), but the effects on peripheral oscillators, for instance 
in adipose tissue or the liver, are unknown. In animals, timed feed-
ing is a strong resetting cue for peripheral clocks (51, 52). To date, 
there have been far fewer investigations in humans, and any reset-
ting effects of meals appear much smaller (93).

Circadian rhythm in hemodynamic regulation. Systemic BP is a 
ubiquitous measure in the clinic but is far from static across the 
day and night, and this day/night pattern of BP has clear clinical 
relevance. BP is usually lower in sleep than in wakefulness and 
has a characteristic surge after awakening, drawing parallels with 
the daily pattern of adverse CV events (refs. 94–97 and Figure 1). 
Indeed, in elderly patients with hypertension, a 10-mmHg systol-
ic BP surge within 2 hours after waking is associated with a 22% 
greater risk of stroke, independent of the 24-hour average BP (98). 
The morning BP surge is not the only risk, as high nighttime BP 
(lack of nocturnal BP dipping) is a sensitive indicator for CV mor-
tality, with 21% greater risk for each 10-mmHg increase in night-
time systolic BP and 9% greater risk for each 5-mmHg increase in 
nighttime diastolic BP (99).

Very few studies have measured the relative contributions of 
the daily pattern of behaviors and of the circadian clock to this day/
night pattern in BP in humans. Two early studies that used 24-hour 
or 26-hour modified constant routine protocols reported no circa-
dian rhythmicity of BP (100, 101). However, those studies had lim-
itations, including exposure to light (which could affect circadian 
phase, ref. 102; suppress melatonin, ref. 103; and reduce potential 
melatonin-mediated dips in BP, ref. 104), lack of strict control of 
physical activity (which could introduce variable effects on BP), 
and lack of a circadian phase marker. In contrast, using three strin-
gently controlled constant routine and forced desynchrony proto-
cols that overcame these limitations, robust endogenous circadian 
rhythms in BP were discovered (83, 90). The endogenous circa-
dian resting BP rhythm has an evening peak and a morning trough. 
Theoretically, the morning circadian trough could be protective by 
partially counteracting the BP surges related to arousal from sleep, 
sudden change in posture on awakening, and transient increase in 

CV physiology, two classic protocols have been used that experi-
mentally dissociate circadian clock effects from rhythmic behav-
ioral and environmental effects (81). The first is the constant 
routine (82), in which environmental, behavioral, and postural 
changes are minimized for at least 24 hours. In our hands, par-
ticipants maintained wakefulness while lying in a semirecumbent 
posture and consuming identical isocaloric snacks every 2 hours 
while in dim light, constant temperature, and with an absence of 
external time cues (83–86). In the constant routine, we observed 
clear circadian rhythms in many variables (83–86), but there are 
also potential changes caused by accumulating sleep loss (87, 88). 
These two effects may be mathematically separated based on 
assumptions of an underlying 24-hour circadian sinusoidal rhyth-
micity that is superimposed on a monotonic effect of accumulat-
ing sleep loss (84). The second protocol is the forced desynchrony; 
it is implemented across multiple days and avoids the problem of 
accumulating sleep loss (Figure 3). Participants live on non–24-
hour cycles of sleep and wakefulness with periods sufficiently far 
from 24 hours that their internal clocks cannot synchronize to the 
imposed artificial day length. We have used imposed behavioral 
cycles of 5 hours 20 minutes (89), 20 hours (90, 91), and 28 hours 
(92). The behaviors (sleep/wake, fasting/feeding, and inactivity/ 
activity) therefore become desynchronized from the normal 
24-hour schedule and thereby desynchronized from the endoge-
nous circadian clock (Figure 3). By standardizing and balancing all 
behaviors evenly across the whole circadian cycle, a forced desyn-
chrony protocol permits statistical determination of (a) an aver-
age circadian rhythm while controlling for all behavior effects (by 
aligning data according to the period of the circadian pacemaker 

Figure 2. Conceptual model showing interactions between behavioral 
stressors, circadian timing, and individual susceptibility to cardiovascu-
lar risk. There is a constant interaction between behavioral stressors (e.g., 
exercise), circadian phases, and underlying individual risk. This results in 
resting physiological rhythms (e.g., blood pressure) and reactivity of those 
rhythms in the presence of stressors. In a healthy individual, the resting 
physiological rhythms are within normal limits and the reactivity to a 
stressor (upward-pointing arrows) is modest, such that the theoretical risk 
threshold for an adverse cardiovascular event is not crossed. However, in 
an individual susceptible to cardiovascular risk due to existing anatomi-
cal or physiological maladaptation, resting physiological rhythms may 
be elevated. Furthermore, in the presence of a stressor, the reactivity of 
physiological rhythms may be exaggerated and can cross the theoretical 
risk threshold for an adverse cardiovascular event such as stroke.
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dian rhythm of systolic BP (90). On the other hand, the efferent 
cardiac vagal tone (estimated from HR variability) had a circa-
dian peak at approximately 8 am, coincident with the circadian 
basal BP trough (90), suggesting that circadian rhythms of BP and 
parasympathetic nervous system activity may be mechanistically 
related in resting healthy individuals.

In health, heartbeat dynamics exhibit complex fluctuations 
characterized by robust self-similar temporal structures, i.e., 
fractal regulation (108). A study using a forced desynchrony dis-
covered that these temporal correlations have a circadian rhythm 
(independent from scheduled behaviors, activity, and mean HR) 
with signs of breaking down towards patterns seen in congestive 
heart failure during the vulnerable morning period (108). This 
raises the possibility that circadian-mediated influences on car-
diac dynamics are involved in the day/night pattern of adverse 
cardiac events (107).

Circadian rhythm in hemostatic regulation. The ability to clot 
blood can be life-saving after an injury, but thrombi within vessels 
can contribute to myocardial infarction, ischemic stroke, and sud-
den cardiac death. Fibrinolytic activity helps break down thrombi 
and maintain vessel patency. The dynamic balance of platelet acti-
vation and fibrinolysis across the day and night may be involved 
in the morning increased risk for occlusive thrombi. For instance, 
highest platelet aggregability and highest concentration of plasmin-
ogen activator inhibitor-1 (PAI-1) occur in the morning (109, 110). 
A forced desynchrony protocol revealed that PAI-1 is rhythmic and 
peaks in the biological morning, suggesting a role for the circadian 
clock in reducing fibrinolytic activity in the morning, especially since 
this circadian rhythm was approximately 8 times larger than chang-
es in PAI-1 induced by behaviors such as mild exercise (111). Indeed, 
several basic studies have demonstrated that PAI-1 gene expression 
is under molecular clock control (112–114). There are also effects 
of the circadian system on platelet activation, with a morning peak 
in platelet surface-activated GPIIb-IIIa, the final part of the plate-
let aggregation pathway (115). Thus, the circadian system appears 
to prepare healthy humans for increased ability to clot blood and 
reduce the breakdown of clots in the morning, with obvious poten-
tial clinical relevance in susceptible individuals. We speculate that 

physical activity that occur around that time. The amplitudes of 
basal resting rhythms are small in healthy people (group average 
3- to 6-mmHg peak-to-trough amplitudes) but may have clinical 
relevance, as they doubled upon exercise (90).

Regulators of BP, such as plasma epinephrine, norepineph-
rine, cortisol, cardiac vagal tone, and HR also exhibit circadian 
rhythms. Burgess et al. (105) compared autonomic nervous 
system function in participants who slept at night or were kept 
awake, reporting that rhythms in cardiac vagal tone were attrib-
utable to the circadian clock, but that rhythms in sympathetic 
tone depended on sleep. Nevertheless, light exposure during 
sleep deprivation was not controlled, which could have caused 
sympathetic activation and blunted any circadian rhythmicity. In 
contrast, more recent constant routine and forced desynchrony 
studies performed in constant dim light found different results 
(90, 106, 107). Sympathetic tone (circulating epinephrine and 
norepinephrine) had large endogenous circadian rhythms (peak-
to-trough amplitudes of 70% and 34% of the mean, respectively) 
that peaked at a circadian phase equivalent to midday. The large 
time lag between the circadian peaks in sympathetic nervous sys-
tem activity and BP (90) suggest that BP’s circadian rhythm is not 
driven by the sympathetic nervous system. Similarly, cortisol had 
a large circadian peak around the time of awakening, an effect 
that would likely counteract rather than contribute to the circa-

Figure 3. Example of a forced desynchrony protocol to separate the 
effects of the endogenous circadian system from the effects of daily 
behaviors. (A) Over 15 days, lights are dim during wake periods and off 
during sleep periods to allow the circadian clock to tick at its own rate 
(usually slightly longer than 24 hours — shown here by the slowly drifting 
core body temperature minimum [CBTmin]). During the forced desynchrony 
portion (boxed in red), participants experience recurrent identical sleep/
wake cycles evenly spread across the circadian cycle (here, each sleep 
episode is 6.67 hours and wake episode is 13.33 hours). Scheduled wake 
episodes are shown in yellow and sleep episodes are shaded gray. (B) 
Data are collected across the protocol. Model heart rate data are shown 
for one trial and plotted as a function of circadian time (left) or of time 
into each imposed 20-hour sleep/wake cycle (right). Note the relatively 
high heart rate during the wake episodes versus sleep episodes. (C) Raw 
data are averaged across different time scales to reveal endogenously 
rhythmic components and behaviorally elicited components. Here, despite 
identically scheduled behaviors in each wake episode, there is an overall 
approximately 24-hour rhythm, with low heart rate at the time of habitual 
sleep (left). As expected, heart rate is lower during (actual) sleep episodes 
than during waking episodes (right).
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ity to mild cycle exercise (90). Notably, exercise-induced increases 
in epinephrine were twice as large in the morning (0830 hours) than 
in the middle of the night (0430 hours) (90). There were also sig-
nificant circadian rhythms in the reactivity of parasympathetic 
markers, with the greatest cardiac vagal withdrawal during exer-
cise across the morning period. These autonomic changes in the 
morning also corresponded to the circadian phase with the small-
est systolic BP reactivity to cycle exercise (90). Rather than a simple 
24-hour rhythm, the reactivities to exercise of both epinephrine and 
norepinephrine exhibited 12-hour rhythms with large peaks at circa-
dian phases corresponding to 0700–1030 and 2000–2200 hours. 
Such 12-hour rhythms in reactivity to exercise could be related to 
12-hour rhythms demonstrated in animal studies in, for instance, 
cardiac β-adrenergic receptor density and function (131), and gene 
transcription in liver, heart, kidney, and adrenals (132).

In summary, healthy people exhibit greatest sympathetic acti-
vation and greatest parasympathetic withdrawal during stresses in 
the biological morning, which corresponds to the time of the great-
est risk of adverse events based on epidemiological data. Similar 
circadian CV studies are warranted in people with CV disease.

Night-shift work, circadian disruption,  
and social jet lag
Nowadays, the availability of artificial light at the flick of a switch 
provides the opportunity to adjust endogenous clock timing to a 
newly imposed light/dark cycle (e.g., night-shift work or jet lag) 
(25). However, repeated shifting of the endogenous circadian 
clock is injurious to health. Shift work is an independent risk factor 
for many chronic conditions, including heart disease (133–136), 
perhaps due to recurring disruptions of the circadian clock itself 
(e.g., light exposure at unusual circadian phases), or perhaps due 
to misalignment between the circadian clock and the behaviors 
(e.g., sleeping and fasting during the day, and being active and eat-
ing across the night). In humans, transient misalignment of behav-
iors and the circadian clock increases inflammation and impairs 
glucose regulation (137–140), with potential relevance to CV dis-
ease (141). A recent laboratory study of shift workers revealed that 
circadian misalignment increased 24-hour BP and CV inflamma-
tory markers including IL-6, C-reactive protein, and TNF-α (142). 
Though similar measures after chronic circadian disruption are 
not available in humans, results in animal models suggest serious 
long-term consequences. Weekly 12-hour phase shifts of the light/
dark cycle reduced longevity in cardiomyopathic hamsters by 11% 
(143). Cardiomyopathy was observed in hamsters whose internal 
circadian clock period did not match the external 24-hour light 
cycle (i.e., 20-hour period due to the tau mutation) (61, 144). Circa-
dian disruption also slows recovery from CV events. For instance, 
recovery from experimentally induced myocardial ischemia is 
impaired in mice by rapidly shifting light/dark cycles, suggesting 
that sleep and circadian rhythm disruption that occurs in intensive 
care units may compromise recovery (145). Genetic manipulation 
of clock components impacts the ischemic tolerance of the heart, 
with some mutations worsening (146) and some improving the 
response (147). Thus, both external (light/dark cycle shifts) and 
internal (molecular clock disruption) impact CV health in mice.

Appropriately shifting circadian phase to match night-shift 
work is desirable but difficult and never immediate. Use of 

evolution has led to increased ability to clot blood in anticipation of 
increased laceration risk after awakening and becoming active. Yet, 
in people with CV vulnerabilities, increased clotting in the morning 
could increase the risk for adverse CV events (111). Indeed, aspirin 
reduces the morning peak in myocardial infarction (116), suggesting 
that the prothrombotic milieu in the morning is partly responsible 
for increased CV risk during that period.

Day/night pattern of vascular endothelial function. The vascu-
lar endothelium exerts remarkable control over the CV system, 
performing anti-atherosclerotic functions and regulating vascu-
lar patency via secretion of nitric oxide (117–119). A dysfunctional 
vascular endothelium is prognostic of adverse CV events (120). In 
animal studies, deletion or mutation of the core clock gene Per2 
impairs acetylcholine-induced endothelial relaxation (121), impairs 
endothelial proliferation, and promotes endothelial aging (122). 
In humans, vascular endothelial function is relatively impaired in 
the morning (6, 123–126), and therefore potentially implicated in 
the morning increase in adverse CV events (127). Interestingly, in 
people with severe heart failure, endothelial function is impaired at 
all times, with loss of daily variation in endothelial function (128). 
Jones et al. (129) found decreased endothelial function across naps 
in the afternoon and at night, suggesting that either sleep or the 
inactivity that accompanies sleep accounts for the documented 
morning impairment in endothelial function (6, 123–126), although 
endogenous circadian system effects have not yet been appropri-
ately investigated in healthy people or those with CV disease.

Circadian rhythms in CV reactivity to behaviors. While there is 
clear evidence of basal circadian rhythms in the CV system, reac-
tions to physiological stressors are more likely to reveal vulner-
abilities. Thus, interactions between the circadian system and the 
acute CV reactions to stressors may better exemplify the circadian 
system’s importance (Figure 2). Indeed, rather than a simple sum-
mation of circadian and behavioral effects, the same stressor may 
produce different CV responses at different circadian times (90, 
91). Such nonlinear interactions presumably optimize function in 
healthy individuals but could theoretically set up the possibility of 
adverse CV events in susceptible individuals (Figures 1 and 2). For 
instance, ambulatory BP responses to acute increases in activity 
are higher in the morning (14), which may be optimal in physically 
active individuals but could trigger adverse CV events in habitu-
ally inactive individuals (130).

Since changes in posture and activity both usually occur dur-
ing the vulnerable morning period following sleep, we determined 
whether CV responses to postural changes and exercise differ 
across the circadian cycle (90, 91). A 20-hour forced desynchrony 
in healthy individuals with tilt table tests (60° head-up for 15 min-
utes) across all phases of the circadian cycle revealed presyncope 
in 15% of all tests, with almost all cases (81%) occurring during the 
half of the circadian cycle corresponding to the biological night 
(2230–1030 hours) (91). Prior to that study, tilt table tests had rare-
ly, if ever, been performed during the night, so this nocturnal period 
of increased vulnerability went unnoticed. This vulnerable period 
could have implications for individuals who become active during 
the night, such as shift workers, parents feeding their infants, and 
elderly people with increased nocturia and insomnia. In the identi-
cal 20-hour forced desynchrony it was found that the circadian sys-
tem significantly modulated the vagal, sympathetic, and BP reactiv-
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bright light during night shifts and reducing light exposure fol-
lowing the end of night shifts (148–150) helps shift the circadian 
pacemaker and does improve performance, mood, and reduces 
sympathetic activity in night-shift workers who sleep during the 
daytime (151). However, in practice, daily light exposure, family 
and social demands, conflicting time cues on days off, and rap-
idly rotating shifts make appropriate circadian synchronization to 
the work schedule quite challenging (152). This means that work, 
meals, and sleep consistently occur at suboptimal circadian times. 
Clock-environment misalignment or clock-behavior misalign-
ment are not limited to night-shift workers. A smaller but similar 
clock disruption is termed social jet lag, defined as the difference 
in the time of sleep between work/school days and free days (153). 
Approximately 70% of the population have noticeable social jet lag 
(i.e., their biological and social clocks differ by more than 1 hour) 
(154), and the greater the social jet lag, the greater the risk for obe-
sity and diabetes (154–156). The effects of social jet lag on the CV 
system have not been well studied, though it is reported that great-
er social jet lag is associated with increased HR and higher cortisol 
levels (155). Moreover, a mere 1-hour advance in behaviors relative 
to circadian time, as occurs with a shift to daylight savings time in 
the spring, is associated with a transient increase in the incidence 
of myocardial infarctions (157). Applying circadian principles, 
such as appropriately timed light, darkness, and sleep, may help 
minimize circadian misalignment during night-shift work, but 
these circadian phase shifts are generally small and take numer-
ous days to achieve such that some compromise seems inevitable 
(158). Thus, research on rapidly shifting the phase of the body 
clock to reduce misalignment is warranted. Indeed, the recent dis-
covery that blockade of vasopressin receptors in the SCN acceler-
ated recovery from jet lag in mice is promising in this regard (159).

Future research
The genes, receptors, cells, organs, and baseline physiology of the 
CV system all exhibit marked internal circadian rhythmicity. How-
ever, it is the interplay between these baseline circadian rhythms 
and the reactivity to daily changes in behavior or the environment 
that likely holds the key to answering whether and how circadian 
rhythms benefit the organism. It is also of interest to determine 
whether 24-hour circadian changes in CV variables follow the sim-
ple negative-feedback regulation principles that are well described 
for the CV system. For instance, acutely increased sympathetic 
activation invariably leads to increased HR; therefore, should we 
expect that a circadian peak in circulating catecholamines will 
cause a circadian peak in HR, or will a different dynamic rela-
tionship occur at these longer time scales? In animal models, it 
has been demonstrated that circadian rhythms in physiology are 
altered in disease states. Yet, modelling circadian disruption in 
humans is difficult, and most experiments have been performed 
on healthy participants. Therefore, a critical gap exists in the iden-
tification of the potential mechanisms by which the rhythms in CV 
physiology in healthy participants translate to people with exist-
ing CV disease. In particular, do normal physiological responses 
expose vulnerabilities at specific circadian phases in people made 
susceptible to adverse CV events because of underlying disease 
(Figure 2)? Moreover, it will be worthwhile to determine if CV cir-
cadian rhythms are affected by chronic CV disease. Another area 

for future exploration is to determine if the well-described racial 
disparities in CV risk (160) can be explained by potential racial dif-
ferences in endogenous circadian rhythms (161).

Circadian clocks are very precise under constant conditions 
but can be reset using external stimuli. A promising area of clinical 
research is the use of small-molecule modifiers that target the cir-
cadian clock to reduce pathology, such as KL001 for diabetes (162) 
and nobiletin for metabolic syndrome (163). In animal models, 
REV-ERBα has been shown to phase shift molecular clocks (164). 
A synthetic REV-ERB agonist taken by mice with diet-induced 
obesity reversed this obesity by reducing fat mass and improving 
dyslipidemia and hyperglycemia (165), while REV-ERBα upregula-
tion increased muscle mitochondrial content and oxidative capac-
ity (166). Conversely, in a clinical trial of timing of aortic valve 
replacement, perioperative myocardial injury was significantly 
lower in those undergoing surgery in the afternoon compared 
with the morning when myocardial REB-ERBα was highest (167).

Clinical directions: chronotherapy
The existence of clear epidemiological patterns of adverse CV 
events and the increase in CV risk in the face of abnormal diur-
nal patterns in physiology, such as the nondipping hypertension 
profile (77, 168), underline the importance of considering new 
time-based approaches to treat CV disease. A host of CV medi-
cations prescribed to help patients recover from and/or prevent 
heart disease include antithrombotics, β-adrenoreceptor antago-
nists, calcium channel blockers, nitrates, angiotensin-converting 
enzyme (ACE) inhibitors, angiotensin receptor blockers, and cho-
lesterol-lowering agents. Moreover, depending on specific CV dis-
eases, their severity, and any comorbidities, most patients receive 
more than one medication (169). The goal of medication dosing 
is to optimize effectiveness without causing serious adverse side 
effects, both of which may depend on circadian time (170, 171). 
Furthermore, pharmacokinetics are driven by the absorption, 
distribution, metabolism, and excretion of a medication, each of 
which may be modulated by circadian rhythms (172). Indeed, gene 
expression is rhythmic for the targets of the majority of top-selling 
and essential medications listed by the World Health Organization 
(41), including angiotensin II receptor blockers, β-adrenoreceptor 
antagonists, and aldosterone receptor blockers (41). Therefore, 
the field of chronotherapy — which considers the timing of medi-
cation doses relative to internal circadian phase, or more com-
monly the time of day — holds promise to improve care.

There are some classic examples where the time of CV medi-
cation administration resulted in differential effects on CV func-
tion (173). Use of β-adrenoreceptor blockers reduces adverse 
CV events on an overall-population basis and abolishes the day/
night pattern of such events (9, 174). It has been recommended 
to take extended-release β-adrenoreceptor blockers in the eve-
ning, as this is sufficient to keep levels high during the morning 
vulnerable period (175). The morning surge of BP can be reduced 
in hypertensive patients by bedtime administration of a long-
acting lipophilic ACE inhibitor (176). Likewise, low-dose aspirin 
can reduce the morning peak in myocardial infarction by approxi-
mately 60% (116), with evening aspirin theoretically being best 
to reduce potential for thrombus formation across the morning 
vulnerable period, although evidence from placebo-controlled 
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trials with long-term follow up of CV outcomes is lacking (177). 
Interestingly, in people with mild untreated hypertension, 100 
mg aspirin at bedtime reduced 24-hour systolic BP by an average 
of 7 mmHg and diastolic BP by 5 mmHg, whereas a similar dose 
of aspirin upon awakening actually increased 24-hour systolic BP 
by an average of 3 mmHg and diastolic BP by 2 mmHg (178). Of 
note, mouse expression of cyclooxygenase-1 (COX-1), a target for 
aspirin, exhibits circadian rhythms in several tissues including the 
heart (41). Another study of the ACE inhibitor captopril showed 
that it reduced BP in mice at all times of day, but improved cardiac 
function only when administered at sleep time, potentially owing 
to captopril administration being in phase with increased ACE in 
the heart, and a consequent time-gated cardiac remodeling (179).

The MAPEC study of over 2,000 individuals with resistant 
hypertension is one of the few chronotherapeutic trials with long-
term CV outcomes in humans (180). Patients in the MAPEC study 
were randomized to either change the timing of the dose of at 
least one antihypertensive medication to bedtime, or to maintain 
their usual practice of taking all hypertensive medications in the 
morning (180). Evening dosing reduced incidence of all CV events 
and CV mortality during 5.6 years of follow-up. These results 
were replicated in people with type II diabetes (181). While highly 
promising, the mechanisms are not yet understood, and double-
blind placebo-controlled trials are now warran8ted with specific 
hypertensive medications rather than any hypertensive medica-
tions. In any chronotherapeutic trial, it should be noted that the 
magnitude of side effects can also depend on the time of dosing. 
For instance, a minor concern for evening chronotherapy using 
β-adrenoreceptor blockers is that these medications can suppress 
normal melatonin release, which may affect sleep (182).

As the science of chronotherapeutics develops, we hope to 
move from simply prescribing medications relative to clock time 
(e.g., morning or evening with respect to our watches), or rela-
tive to daily behavioral patterns (e.g., before bedtime, or with a 
meal) to prescribing medications relative to endogenous biologi-
cal time (i.e., circadian phases) and with possible consideration 

of any interaction between circadian phase and behavioral cycle 
on the effects of medications. These considerations can be impor-
tant because internal circadian phase relative to external time or 
behavioral cycle varies between people, across ages, and depends 
on habitual light exposure (e.g., night-shift work). Moreover, if an 
evening dose is found effective, it will be important to determine if 
this is due to the circadian clock, for example via its regulation of a 
specific medication target that has circadian rhythmicity, or due to 
behaviors, such as meal history. Physicians may also wish to con-
sider the possibility that comorbid conditions may affect the effec-
tiveness of chronotherapy. For example, the vulnerable period for 
an adverse CV event in the general population is in the morning, 
coinciding with a morning surge in BP (183), but in patients with 
long-term (≥5 years) type I or II diabetes, the morning peak in 
myocardial infarction is significantly blunted (184). Similarly, the 
vulnerable period for sudden cardiac death is relatively advanced 
to the middle of the night rather than the morning in people with 
obstructive sleep apnea (185). Finally, we acknowledge that dos-
ing according to internal circadian phase is presently somewhat 
impractical because estimation of internal phase (e.g., from serial 
salivary melatonin assays) is slow and expensive. Thus, develop-
ment of an inexpensive, accurate, and instantaneous biomarker of 
internal circadian phase is a major challenge for the field.
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