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Clonal evolution of follicular 
lymphomas
Follicular lymphoma (FL) is an indolent 
subtype of non-Hodgkin’s lymphoma 
(1) that clonally evolves over decades (2) 
before presenting as overt disease. In 
almost all cases of FL, the t(14;18)(q32;q21) 
translocation, which places the oncogene 
BCL2 under the control of the immuno-
globulin heavy chain (IGH) enhancer, rep-
resents an initial genetic event (3–5). The 
juxtaposition of BCL2 to the JH cluster of 
the IGH locus confers a survival advantage 
on developmentally arrested germinal cen-
ter (GC) B cells (6–8). Normal GC B cells do 
not express BCL2 and are characterized by 
a proapoptotic program of gene expression 
that includes cell surface death receptor 
FAS, tumor protein TP53, and BCL2-asso-
ciated X (BAX) (9). Therefore, GC B cells 
are destined to die (9, 10) unless they are 
rescued by survival signals emanating from 
a B cell receptor (BCR) with high affinity to 
antigen. BCL2 expression is triggered in 
memory B cells that arise from a GC reac-
tion and increases the half-life of these 
cells (11). As a consequence, transgenic 

mice that overexpress BCL2 in the hemato-
poietic compartment display a marked 
reduction of B cell apoptosis in GCs as 
compared with that seen in WT controls 
(12). Affinity maturation in these transgenic 
mice results in a memory B cell compart-
ment with reduced stringency in the selec-
tion of high-affinity BCRs (12). These find-
ings suggest that constitutive expression of 
BCL2 as the result of the t(14;18)(q32;q21) 
translocation fundamentally alters GC and 
memory B cell dynamics.

Despite constitutive BCL2 expression, 
cooperating genetic lesions are required 
for malignant transformation of B cells 
into full-blown FL (7, 8, 13, 14). The t(14;18)
(q32;q21) translocation occurs at a low 
frequency in normal B cells in about 70% 
of healthy individuals and increases with 
age (15–18). Individuals in whom t(14;18)
(q32;q21) translocation has occurred dis-
play developmentally arrested B cells (FL 
precursors) that have transitioned through 
the GC and have imprints of AID activity, 
namely somatic hypermutation (SHM) and 
class switch recombination (CSR) (16, 18). 
Full-blown FL arises from these atypical 

B cells decades later (2). The long latency 
period observed in FL development indi-
cates a prolonged process of clonal evolu-
tion. Such a protracted clonal evolutionary 
process was previously demonstrated in 
a subset of pre–B cell acute lymphoblas-
tic leukemia (ALL) patients who harbor 
the ets variant 6 runt-related transcrip-
tion factor 1 (ETV6-RUNX1) translocation 
(19–21). Although the ETV6-RUNX1 rear-
rangement arises in utero (20), less than 
1% of children who carry this rearrange-
ment develop full-blown leukemia, which 
requires postnatal acquisition of second-
ary lesions in the preleukemic clone (21).

Only recently have studies begun to elu-
cidate the mechanisms responsible for the 
long latency period in FL evolution. Mul-
tiple studies have shown that IgM+ mem-
ory B cells get reactivated and can reen-
ter the GC upon antigenic recall (22–24).  
Importantly, GC reentry is restricted to the 
IgM+ memory B cell subset and does not 
occur in IgG+ memory B cells (22, 23). In 
this issue, Sungalee and colleagues reveal 
that the iterative GC reentry of t(14;18)
(q32;q21)-carrying IgM+ memory B cells 
upon chronic immunization is the central 
driver of follicular lymphomagenesis (25).

Chronic infection drives 
accumulation of t(14;18)
(q32;q21) B cells
Sungalee and colleagues developed murine 
models that recapitulate the genesis of FL 
by elegantly mimicking the sporadic occur-
rence of  the t(14;18)(q32;q21) transloca-
tion in humans (25). BCL2tracer mice harbor 
an engineered human BCL2 transgene 
that must undergo rearrangement to be 
transcribed and is highly expressed in B 
cells upon activation of the RAG recom-
binases (25). The same BCL2 transgene 
could also be transduced via retrovirus into 
BM precursors, which could then be trans-
planted into irradiated mice. In humans, 
the t(14;18)(q32;q21) breakpoint combines 
features of RAG-mediated V(D)J recombi-
nation and AID-dependent CpG targeting 
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Memory B cells are a dynamic subset of the mature B cell population that 
in some cases can reenter germinal centers (GCs) in response to iterative 
infections. Such a reactivation can lead to accumulation of genetic lesions 
in these cells, potentially from repetitive activation of the B cell mutator 
enzyme AID. Normal memory B cells do not survive repeated reentries into 
GCs. In this issue, Sungalee et al. demonstrate that memory B cells harboring 
the oncogenic BCL2:IGH translocation, which results in constitutive BCL2 
expression, survive multiple GC entries upon repetitive immunization. 
Through these multiple GC reentries, the hallmark BCL2:IGH translocation 
enables AID-induced hypermutation and propagates clonal evolution toward 
malignant follicular lymphoma.
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BCL6+/lo phenotype (25). These benign 
precursors eventually evolve over several 
decades (up to 20 years) to give rise to full-
blown FL (13, 27).

Repeated GC transits carry the risk 
of genetic instability through repetitive 
exposure to AID expression (28); there-
fore, lymphomas arising from the GC, 
such as FLs, display a high degree of DNA 
damage resulting from SHM and CSR (14, 
29–31). The findings by Sungalee et al. (25) 
build on these observations. Using whole- 
exome sequencing, the authors found 
evidence of increased mutations, possi-
bly resulting from AID activity, in both 
GCs and memory B cells overexpressing 
BCL2 as compared with empty vector–
transduced controls. Moreover, Sungalee 
and colleagues interrogated their clonal 
evolution model in humans by comparing 
the intraclonal variation (ICV) in t(14;18)
(q32;q21)+ memory B cell clones with that 
in normal memory B cell clones. In agree-
ment with their earlier findings, ICV was 
higher in the t(14;18)(q32;q21)+ memory B 
cell clones with an increased rate of SHM 
and CSR as compared with that in normal 
counterparts in the same individual (25). 

The authors found that these cells also 
failed to differentiate after GC passage 
and continued to express IgM on the sur-
face, thereby continuously accumulating 
in the IgM+ memory B cell pool (ref. 25 and 
Figure 1). The impaired differentiation, 
longer half-life (11), and IgM expression 
allowed BCL2hi memory B cells to itera-
tively reenter the GC at multiple cycles of 
antigenic recall. Moreover, these features 
also conferred a survival advantage for 
these BCL2-expressing B cells compared 
with normal B cells in the lymphoid follicle 
(ref. 25 and Figure 1).

Healthy B cells were repeatedly 
weeded out by subsequent returns to the 
GC, leaving the developmentally blocked 
BCL2hi B cells to colonize the GC and 
cause FL in situ (FLIS) (Figure 1). Some 
of these BCL2hi B cells also disseminated 
into peripheral lymphoid tissues and were 
termed FL-like cells (FLLCs). Concor-
dantly, Sungalee and colleagues observed 
wide dissemination of atypical t(14;18)
(q32;q21)+ B cells in lymphoid tissues from 
healthy individuals who had no obvious 
symptoms of FL (25). FLIS and FLLCs both 
resembled GC B cells and have a BCL2+/ 

and typically occurs in pro–/pre–B cells 
(26). This feature of the t(14;18)(q32;q21) 
translocation makes the RAG-dependent 
BCL2tracer model developed by Sungalee 
et al. physiologically relevant to human 
disease. Moreover, these models could 
be tweaked to study perturbations in the 
frequency of BCL2-expressing B cells in 
different lymphoid organs. The authors 
also investigated immunization-induced 
bidirectional transitions between GC and 
memory B cells in response to high expres-
sion levels of BCL2 (25).

Sungalee and colleagues determined 
that BCL2-expressing memory B cells are 
able to reenter the GC following repeated 
antigen challenges. As demonstrated by 
the BCL2tracer mouse model, a small num-
ber of initial GC transits is insufficient 
for the accumulation of abnormal BCL2-
expressing B cells and the induction of FL 
(25). Therefore, the authors proposed and 
validated that chronic or repetitive antigen 
exposure is required to induce multiple 
iterative GC entries and genetic insta-
bility. Only BCL2-expressing memory B 
cells underwent repetitive GC transits by 
evading apoptosis (ref. 25 and Figure 1). 

Figure 1. Memory B cell dynamics in the multistep development of follicular lymphoma. (A) Normal and t(14;18)+ naive B cells both enter into GC reactions 
upon immunization. GC B cells undergo SHM and CSR. Owing to constitutive BCL2 expression, t(14;18)+ cells have a survival advantage over normal GC B cells; 
therefore, BCL2-overexpressing t(14;18)+ cells are positively selected into the IgM+ memory B cell pool and are capable of GC reentry upon reexposure to anti-
gen. With every successive cycle of GC reentry, t(14;18)+ cells outgrow their healthy counterparts. (B) Decades of iterative GC reentries cause an accumulation of 
abnormal t(14;18)+ cells in the GC (termed FLIS). This process produces a continuous output of t(14;18)+ IgM+ memory B cells, ultimately leading to overt FL.
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observations by Sungalee et al. provide 
proof of principle for previous epidemi-
ological studies suggesting that delayed, 
recurrent, and chronic infections predis-
pose humans to developing B lymphoid 
malignancies (37–41).

In light of the findings of Sungalee 
and colleagues (25), it may be worthwhile 
to investigate whether these studies can 
be extended to further examine other B 
lymphoid malignancies that require addi-
tional genetic lesions for transformation. 
Studies in this direction may unveil a pre-
viously unidentified mechanism by which 
infection leads to clonal evolution in cer-
tain subgroups of pediatric pre–B cell leu-
kemias. Such investigations are ongoing 
for the ETV6-RUNX1 subgroup of pre–B 
cell ALL, in which Greaves and Wiemels 
have proposed that delayed pathogen 
exposure resulting in chronic and damag-
ing immune responses during early child-
hood may predispose children carrying 
this rearrangement to overt leukemia (the 
so-called “delayed infections hypothesis,” 
refs. 37, 38).
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Conclusions and future 
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