Longitudinal study of living kidney donor glomerular dynamics after nephrectomy

Colin R. Lenihan, Stephan Busque, Geraldine Derby, Kristina Blouch, Bryan D. Myers, and Jane C. Tan

1Division of Nephrology, Department of Medicine and 2Department of Surgery, Stanford University School of Medicine, Palo Alto, California, USA.

BACKGROUND. Over 5,000 living kidney donor nephrectomies are performed annually in the US. While the physiological changes that occur early after nephrectomy are well documented, less is known about the long-term glomerular dynamics in living donors.

METHODS. We enrolled 21 adult living kidney donors to undergo detailed long-term clinical, physiological, and radiological evaluation pre-, early post- (median, 0.8 years), and late post- (median, 6.3 years) donation. A morphometric analysis of glomeruli obtained during nephrectomy was performed in 19 subjects.

RESULTS. Donors showed parallel increases in single-kidney renal plasma flow (RPF), renocortical volume, and glomerular filtration rate (GFR) early after the procedure, and these changes were sustained through to the late post-donation period. We used mathematical modeling to estimate the glomerular ultrafiltration coefficient (Kf), which also increased early and then remained constant through the late post-donation study. Assuming that the filtration surface area (and hence, Kf) increased in proportion to renocortical volume after donation, we calculated that the 40% elevation in the single-kidney GFR observed after donation could be attributed exclusively to an increase in the Kf. The prevalence of hypertension in donors increased from 14% in the early post-donation period to 57% in the late post-donation period. No subjects exhibited elevated levels of albuminuria.

CONCLUSIONS. Adaptive hyperfiltration after donor nephrectomy is attributable to hyperperfusion and hypertrophy of the remaining glomeruli. Our findings point away from the development of glomerular hypertension following kidney donation.

TRIAL REGISTRATION. Not applicable.

FUNDING. NIH (R01DK064697 and K23DK087937); Astellas Pharma US; the John M. Sobrato Foundation; the Satellite Extramural Grant Foundation; and the American Society of Nephrology.
logic, and morphometric characteristics are summarized in Table 1. Sixteen subjects were ethnically of mixed European descent, and 5 were Asian. Figure 1 depicts serial physiological, laboratory, and radiological measurements performed pre-, early post-, and late post-donation. The single-kidney GFR increased significantly \((P < 0.001) \) from that seen pre-donation to early post-donation and remained stable thereafter, averaging 47.64, and 66 \(\text{ml/min/1.73 m}^2 \) pre-, early post-, and late post-donation, respectively. The corresponding values for single-kidney RPF changed in parallel with the GFR; 235, 314, and 335 \(\text{ml/min/1.73 m}^2 \) pre-, early post-, and late post-donation, respectively \((P < 0.001) \). A similar pattern of increase was observed for renocortical volume: 103, 131, and 139 \(\text{cm}^3 \) pre-, early post-, and late post-donation, respectively \((P < 0.001) \). An increasing fraction of the patients became hypertensive during follow-up and received antihypertensive medications. However, measured mean arterial pressure (MAP) remained constant throughout the study. Serum creatinine rose early post-donation and remained stable thereafter. Plasma oncotnic pressure \((\pi_c) \) remained unchanged from the pre-donation to early post-donation periods (26.5 mmHg [25.5–28 mmHg] versus 26.9 mmHg [26–27.8 mmHg]; \(P = 0.74 \)). We lacked the equipment to measure \(\pi_c \) during the late post-donation study. However, serum albumin levels remained unchanged from pre-donation \((3.95 \pm 0.26 \text{g/dl}) \) to early post-donation \((3.97 \pm 0.21 \text{g/dl}) \) to late post-donation \((3.94 \pm 0.18 \text{g/dl}) \) periods, providing indirect evidence for the constancy of \(\pi_c \) during the late post-donation period.

We next assessed whether post-donation hyperfiltration was associated with changes in \(K_f \). We used Deen’s mathematical model \((8, 9) \) to estimate the single-kidney \(K_f \) longitudinally. Since the MAP was similar at all 3 study time points, we first calculated the \(K_f \), assuming that the glomerular transcapillary hydraulic pressure gradient \((\Delta P) \) was fixed at 40 mmHg (Figure 2A). The \(K_f \) increased from a median pretransplantation level of 4.9 \(\text{ml/(min \times mmHg)} \) to 7.1 \(\text{ml/(min \times mmHg)} \) at the early post-donation point \((P < 0.01 \text{ versus pre-donation}) \) and to 7.0 \(\text{ml/(min \times mmHg)} \) late post-donation \((P < 0.01 \text{ versus pre-donation}) \). To allow for the possibility of glomerular hypertension in hypertensive subjects (despite normalization of their blood pressure with treatment), we performed an additional analysis using a \(\Delta P \) of 40 mmHg, in which the subject was normotensive, and 43 mmHg at any time point after the subject became hypertensive. This too revealed an early increase in the \(K_f \) that was maintained through the late post-donation period (Figure 2B). Sensitivity analyses restricted to (a) the 13 subjects never exposed to an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) and (b) the 11 subjects never exposed to any antihypertensive drug (Figure 2C) yielded similar results.

We also considered the (unlikely) possibility that post-donation hyperfiltration was maintained exclusively by glomerular hypertension. We therefore estimated \(\Delta P \) pre-, early post-, and late post-donation, assuming that the \(K_f \) remained fixed at the pre-donation levels (Figure 2D) and that the pre-donation \(\Delta P \) was 40 mmHg. We found a similar pattern of an early rise in the post-donation \(\Delta P \) that was sustained through the late post-donation period. Furthermore, in order to highlight the inverse relationship between the \(K_f \) and \(\Delta P \), we modeled the late post-donation \(K_f \) using progressively higher \(\Delta P \) values and found that \(\Delta P \) values of 45 and 50 mmHg would result in maintenance of the late post-donation GFR, despite \(K_f \) decrements of 32% and 46%, respectively.

\(K_f \) is a product of the glomerular-filtering surface area and the hydraulic permeability of the glomerular capillary. Since the whole-kidney-filtering surface area is dependent on both glomerular number and glomerular volume, we hypothesized that measured renocortical volume would, in turn, reflect the whole-kidney \(K_f \). In an analysis of the 20 subjects with pre-donation radiological data, we found a significant correlation (Spearman’s \(r = 0.66 \) [95% CI, 0.29–0.86]; \(P = 0.0016 \)) between the pre-donation renocortical volume and \(K_f \) (Figure 3A).

As reported above, kidney donation was associated with an increase in renocortical volume (Figure 1C). Assuming proportionate glomerular hypertrophy, we used the percentage change in renocortical volume at early and late time points to compute the corresponding \(K_f \) values. We then used the model to calculate the \(\Delta P \) required to maintain the GFR measured at early and late time points using these calculated values for the early post- and late post-donation \(K_f \) (in which the initial \(\Delta P \) was set at 40 mmHg for all subjects). Renocortical volume measurements were available at all study time points for 12 subjects; therefore, we applied either the mean change in renocortical volume to generate early and late \(K_f \) values in all 21 subjects (Figure 3B) or individual changes in renocortical volume to generate the corresponding \(K_f \) values in the 12 subjects with complete radiological follow-up. The computed \(\Delta P \) remained remarkably constant across the study time points; early and late \(\Delta P \) post-donation levels averaged 41 ± 3.7 mmHg and 40.5 ± 2.2 mmHg, and 41.2 ± 3.7 mmHg and 40.5 ± 2.0 mmHg for all 21 subjects and for the 12 subjects with complete renocortical volume data, respectively.

Estimation of glomerular numbers. The single-nephron \(K_f \) (SNK) was calculated in 19 subjects in whom glomerular volume, filtering surface density, and hydraulic permeability were measured in biopsy specimens obtained at the time of donation \((9) \). Pre-donation glomerular morphometric data are shown in Table 1.
538,946 (range of 364,194 to 709,175), at a median of 6.3 years after donation ($P = 0.38$, 2-tailed Wilcoxon matched-pairs test).

Hypertension and albuminuria. The prevalence of hypertension in subjects increased from 3 pre-donation to 4 and 12 early and late post-donation, respectively. The corresponding prevalence of antihypertensive medication use in subjects was 2, 3, and 10, respectively (Table 2). ACEIs and ARBs were the most commonly prescribed antihypertensive drug class. No subjects had micro- or macroalbuminuria at any of the study time points.
The median and interquartile ranges for the urine albumin/creatinine ratio pre-, early post-, and late post-donation were not detectable (ND) (ND –15.6 mg/g), 1.8 mg/g (ND –8.7 mg/g), and ND (ND –7 mg/g), respectively.

Discussion
In this detailed longitudinal follow-up study of 21 middle-aged, living kidney donors, we found that adaptive hyperfiltration by the remaining kidney is maintained at a constant level for 6 to 8 years after donation. The hyperfiltration is sustained through an increase in RPF and in the whole-kidney Kf, with no clear-cut contribution from glomerular hypertension.

Concern about a less favorable outcome after contralateral nephrectomy stems from experiments using the 5/6 nephrectomized rat. In this model, nephron loss results in glomerular hypertension in the “remnant kidney,” with subsequent development of hypertension, proteinuria, and glomerulosclerosis (10, 11). Two recent epidemiological studies have raised concern about the outcome of donors of a single kidney for transplantation. Both studies report that kidney donors have an increased risk of failure of the remaining kidney, with subsequent development of hypertension, proteinuria, and glomerulosclerosis in cases where the donor kidney is the only functioning kidney.

The schematic diagram in Figure 4 illustrates that the magnitude of the GFR is dependent on RPF, glomerular ultrafiltration pressure (P_{UF}), and the Kf. The single-nephron GFR is a product of P_{UF} and the SNK (12, 13). P_{UF} is determined by the opposing pressures across the glomerular capillary wall, where ΔP is the difference between glomerular capillary hydraulic pressure and Bowman’s space hydraulic pressure. An opposing pressure to that of ΔP is exerted by glomerular capillary oncotic pressure, π_{GC}, which increases along the course of the glomerular capillary as protein-free plasma is filtered, with an ensuing increase in glomerular capillary plasma protein concentration. The difference between ΔP and π_{GC} at any given point along the glomerular capillary is the P_{UF}. In many studies of the Munich-Wistar rat, ΔP and π_{GC} were observed to equalize before the end of the glomerular capillary, bringing filtration to a halt, a phenomenon referred to as filtration pressure equilibrium (14, 15). In humans, who are most likely in filtration pressure disequilibrium, the entire filtration surface area participates in filtration. Increased RPF increases the GFR through 2 mechanisms: (a) by diminishing the rate of increase in π_{GC} along the glomerular capillary, thereby increasing the P_{UF} and GFR, and (b) in species that are in filtration pressure equilibrium, by shifting the point of equilibration downstream along the length of the capillary, thereby increasing the effective filtration surface area. The Kf is a product of the filtration surface area and the hydraulic permeability of the glomerular barrier. Hydraulic permeability is determined by the fenestrated capillary endothelium, the glomerular basement membrane, and the filtration slits that separate the epithelial foot processes. In the absence of a change in the P_{UF} or filtration surface area, any decline in the GFR must be a consequence of diminishing hydraulic permeability of the 3-layered glomerular capillary wall, thereby lowering the Kf independently of the filtration surface area.

In the immediate wake of nephrectomy, RPF increases by approximately 40%, resulting in a parallel rise in the GFR (6). In addition to a sustained increase in RPF, post-donation hyper-
filtration may additionally be maintained by (a) compensatory glomerular hypertrophy, leading to an increase in the whole-kidney \(K_f \); (b) an increase in glomerular hypertrophy, leading to an increase in the whole-filtration may additionally be maintained by (a) compensatory modeled the whole-kidney \(K_f \) based on the observed magnitude and late post-donation periods, respectively. Indeed, when we increase in renocortical volume from the pre-donation to early uninephrectomy (16, 17), and in biopsies of solitary human volume increases in proportion to the renocortical volume follow-
is well described in both animal models, in which glomerular vol-
Although the mechanism is contentious, glomerular hypertrophy

**Figure 3. Relationship between renocortical volume and the \(K_f \) and implications for post-donation glomerular dynam-
ics.** (A) Relationship between pre-donation renocortical volume and the \(K_f \), assessed using Spearman’s rank-order correlation \(n = 20 \). (B) Estimated change in \(\Delta P \) assuming that the \(K_f \) increases in proportion to the mean renocortical volume at each time point \(n = 21 \). Statistical comparisons were made using Friedman’s test with Dunn’s post-test. In B, the boxes extend between the first and third quartiles, the line within the boxes represents the median value, and the lower and upper whiskers extend between the minimum and maximum values.

have contributed to the preservation of glomerular function and number observed over the 6- to 8-year follow-up period.

Our study represents, to our knowledge, the most detailed longitudinal physiological follow-up study of living kidney donors to date. However, our investigation does have certain limitations including its small size. Late post-donation evaluations were performed at a median of 6.3 years (interquartile range, 5.2–7.6 years), and it is possible that with longer follow-up, the effects of “relative glomerulopenia” might become evident. Since \(\Delta P \) cannot be measured directly, we assumed a level of 40

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pre-donation</th>
<th>Early post-donation</th>
<th>Late post-donation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Amlodipine/valsartan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>Valsartan</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Benazapril</td>
<td>Benazapril</td>
<td>HCTZ/lisinopril</td>
</tr>
<tr>
<td>4</td>
<td>HCTZ/telmisartan</td>
<td>HCTZ/telmisartan</td>
<td>HCTZ/benazapril</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>Lisinopril</td>
<td>Lisinopril/doxasocin</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>Lisinopril</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lisinopril</td>
<td>Lisinopril</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Lisinopril</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>19</td>
<td>–</td>
<td>Atenolol</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>HCTZ</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

HCTZ, hydrochlorothiazide.
mmHg for all donors in our main analyses. This estimate for AP assumes that humans are in a state of filtration pressure disequilibrium. Our assumption stems from (a) experimental studies in dogs demonstrating filtration pressure disequilibrium and (b) the relation between RPF and GFR observed during volume expansion in humans, suggestive of filtration pressure disequilibrium. Much of our current understanding about glomerular dynamics stems from physiological studies of the Munich-Wistar rat, in which superficial glomeruli permit glomerular micropuncture and direct glomerular capillary pressure measurement. In hydropenic conditions, these rats have been shown (by multiple investigators) to be in a state of filtration pressure equilibrium (14, 15).

In these experiments, volume contraction and renal vasoconstriction resulting from the anesthetic and surgical procedures likely contributed to a diminution of RPF and a predisposition to filtration pressure equilibrium, although in volume-depleted animals, insight into the relation between RPF and filtration pressure equilibrium is further confounded by a concurrent angiotensin II-mediated contraction of the Kf (26). However, Munich-Wistar rats could be driven into filtration pressure disequilibrium with a volume expansion–induced increase in glomerular plasma flow (from 60 to 80 nl/min to >150 nl/min) (27). Certain colonies of Munich-Wistar rats were also observed to be in filtration pressure disequilibrium in hydropenic conditions, a consequence of colony-specific differences in the Kf (28).

Glomerular capillary pressure has also been indirectly estimated in other species using the nephron stop-flow technique, the results of which have been shown to correlate well with direct glomerular pressure measurements in Munich-Wistar rats (15). Such estimates in dogs have fairly consistently revealed filtration pressure disequilibrium (29, 30). Dogs are closer to humans in terms glomerular surface area and single-nephron RPF.

The presence or absence of filtration pressure equilibrium can be indirectly determined from the relation between RPF and GFR. In states of equilibrium, an acute increase in RPF leads to a proportionate elevation of the GFR, with the filtration fraction remaining constant (27). By contrast, in disequilibrium, increases in RPF associated with acute volume expansion result in a smaller or absent increase in the GFR associated with a decrease in the filtration fraction (27). We have previously demonstrated an absence of parallel increases in the GFR and a declining filtration fraction, despite substantial increases in RPF during volume expansion in healthy humans, pointing to filtration pressure disequilibrium (31–33). Following uninephrectomy, by contrast, our healthy donors exhibited parallel increases in RPF and GFR, with constancy of the filtration fraction across our 3 time points of evaluation. We infer that in the presence of filtration pressure disequilibrium, the observed post-donation hyperfiltration results from a compensatory glomerular hypertrophy–induced increase in the Kf, along with the associated augmentation of RPF. Were humans in filtration pressure equilibrium, the post-donation hyperfiltration seen in our living donors could be accounted for solely by the observed increase in RPF, however, we consider this scenario extremely unlikely.

Blood pressure throughout the study was well controlled, making it unlikely that post-donation hypertension resulted in elevation of glomerular pressure. Furthermore, a sensitivity analysis using the ΔP value of 43 mmHg for any subject with a diagnosis of hypertension yielded results similar to those of our primary analysis. We also found that exclusion of subjects treated with either angiotensin blockade or any anti-hypertensive agent did not materially affect results (11). Finally, the lack of non-donor controls makes mechanistic inference about post-donation changes in blood pressure difficult.

In conclusion, we have shown that post-donation hyperfiltration by the remaining kidney is maintained stable by a combination of an increase in RPF and in the Kf, resulting from compensatory glomerular hypertrophy. Our modeling argues against the development of significant glomerular hypertension following donor nephrectomy.

Methods

Study population. We enrolled 21 adult subjects prior to their kidney donation procedure. All donors underwent a standard medical, social, and psychological pre-donation assessment. Exclusion criteria for donation included a BMI of greater than 35 kg/m², glucose intolerance or diabetes, a creatinine clearance of less than 80 ml/min/1.73 m², and proteinuria. Well-controlled hypertension in subjects older than 50 years was not considered a contraindication to kidney donation. Subjects underwent study evaluations at 3 time points: (a) pre-donation, (b) early post-donation, and (c) late post-donation. Nineteen of the 21 subjects underwent a kidney biopsy at the time of their nephrectomy.

Assessment of kidney function. Subjects underwent a detailed assessment of kidney function before, and on 2 occasions following, donation. GFR and RPF were measured using iothalamate and para-aminohippuric acid (PAH) urinary clearance tests, respectively. RPF was cal-
calculated by dividing PAH clearance by an extraction ratio of 0.9 (34). Plasma oncotic pressure (πP) was measured using membrane osmometry at pre-donation and early post-donation time points (35). Onocytic pressure measurement was not available at the late post-donation assessment. Instead, we measured serum albumin serially. Given that serum albumin levels were unchanged at all the study time points, we assumed constancy of onocytic pressures across the study and used the mean value of pre- and early post-donation onocytic pressures as an estimate of late post-donation onocytic pressure. Blood pressure was measured with a Dinamap (GE Healthcare). The Kf was calculated using a mathematical model described by Deen et al. (8, 9). This requires knowledge of the GFR, RPF, πf, and ΔP. We have estimated that the ΔP in healthy human glomeruli approximates 40 mmHg. This estimate follows from the assumption that humans are in a state of filtration pressure disequilibrium. Filtration pressure disequilibrium is characterized by an excess of ΔP over the opposing onocytic pressure at the efferent end of the glomerular capillary network. From πf and the filtration fraction, we estimate that the efferent onocytic pressure ranges between 30 and 35 mmHg in healthy humans (21, 31). From the latter value, assuming the presence of filtration pressure disequilibrium, we accordingly inferred that the ΔP approximates 40 mmHg. A number of subjects were diagnosed with hypertension either before or after donation. Since a portion of the elevated arterial pressure is likely to be transmitted into the glomerular capillaries in hypertensive subjects, we also performed an additional analysis using a higher ΔP estimate of 43 mmHg in these individuals (36, 37). We determined that pressure as a blood pressure in excess of 140/90 mmHg or the established use of antihypertensive medication in subjects previously diagnosed as hypertensive.

Estimation of kidney volumes. Donors underwent either MR or CT renal angiography before and after kidney donation. Whole-kidney and cortical volumes were estimated using 3D imaging with CT or MRI according to the Cavalieri principle (38). We changed protocols from MRI to CT imaging during the study period because of a concern about nephrogenic systemic fibrosis following gadolinium administration (39). We found excellent concordance (within 7 cm3) between the 2 modalities for renocortical volume estimation, and therefore, measurements obtained from either MRI or CT were used interchangeably.

Structural evaluation of glomeruli. A cortical wedge biopsy from the donated kidney was obtained from 19 subjects prior to transplantation. Each biopsy core was subjected to detailed light and electron microscopic analysis, as described in detail by us previously (9). Briefly, the percentage of global glomerular sclerosis, the fractional interstitial area, and the glomerular volume (Vg) were measured using light microscopy. The filtration surface density (Sf) of the glomerular capillary wall was determined using line-intercept methods on electron microscopic whole-glomerular montages (40). The filtration surface area (Sf) was then calculated as the product of filtration surface density and glomerular volume (Sf × Vg). Hydraulic permeability (k) was assessed at an ultrastructural level (>12,000) from a detailed evaluation of filtration slit frequency and thickness of the glomerular basement membrane (41). The SNKf was calculated as the product of the filtration surface area per glomerulus and the hydraulic permeability of the glomerular capillary wall (SNKf = S × k) (41, 42). The NFG was then calculated by dividing the Kf by the SNKf (NFG = Kf/SNKf).

Estimation of glomerular number late post-donation. Since glomerular numbers cannot increase, any increase in the Kf must be accounted for by a proportional glomerular hypertrophy–induced increase in the post-donation SNKf. In order to calculate a conservative estimate of the late glomerular number, we assumed that maximal glomerular hypertrophy had occurred by early post-donation and that the ΔP was constant at 40 mmHg. To estimate the early post-donation SNKf (SNKfearly), we used the following equation:

\[
\text{SNKf}_{\text{early}} = \frac{K_{\text{early}}}{K_{\text{pre}}} \times \text{SNKf}_{\text{pre}}
\]

(Equation 1)

We then calculated the late post-donation NFG (NFG-late) as follows:

\[
N_{\text{FG-late}} = \frac{K_{\text{late}}}{\text{SNKf}_{\text{early}}}
\]

(Equation 2)

Statistics. All results are reported as mean ± SD or as median and interquartile range where distributions were Gaussian or non-Gaussian, respectively. Statistical analyses were performed using the 2-tailed Wilcoxon matched-pairs test, repeated measures ANOVA followed by Bonferroni’s post-test, or Friedman’s test followed by Dunn’s post-test where appropriate. Correlation was assessed using Spearman’s rank-order correlation. A P value of less than 0.05 was considered significant.

Study approval. The study was approved by the IRB of Stanford University. Informed consent was obtained from all subjects prior to their participation in the study.

Acknowledgments

Funding was provided by grants from the NIH (R01DK064697); Astellas Pharma US; the John M. Soboﬁt Foundation; and the Satellite Extramural Grant Foundation. C.R. Lenihan receives support from an American Society of Nephrology (ASN) Research Fellowship. J.C. Tan receives support from the National Institute of Diabetes and Digestive and Kidney Diseases (K23DK087937). The Stanford Nephrology Fellowship program was supported by T32 DK007357. We acknowledge the contributions of Anjali Saxena, Bing Ho, Jieshi Yan, and Biruah Workeneh in the recruitment and retention of subjects in this longitudinal study.

Address correspondence to: Jane C. Tan, Division of Nephrology, Stanford University School of Medicine, 1070 Arastradero Road, Palo Alto, California 94304, USA. Phone: 650.725.4738; E-mail: janetan@stanford.edu.

1997;64(7):976–978.