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Introduction
Differences between female and male immune and autoim-
mune responses have been well documented (1). In general, the 
frequency and severity of various infectious diseases are higher 
in males than in females, suggesting that females have stronger 
immune responses (2, 3). The flip side of this phenomenon is that 
females are more likely to develop autoimmune diseases. In fact, 
80% of autoimmune patients are women. Diseases such as sys-
temic lupus erythematosus (SLE), Grave’s disease, Hashimoto’s 
thyroiditis, and Sjögren’s syndrome have the greatest female 
biases, occurring between seven and ten times more frequently in 
females than in males. MS, RA, and scleroderma also bias toward 
females, exhibiting, a 2:1–3:1 female/male ratio (2). It must be 
noted that there are a few autoimmune syndromes that are sex 
neutral in humans (but not in mice), including type 1 diabetes 
(T1D) in children under 15 years of age (4); also, some autoim-
mune disorders such as ankylosing spondylitis and T1D in 15- to 
34-year-old adults occur more often in men (5–8). Such diseases 
will not be considered in this Review, which will instead focus on 
autoimmune diseases that occur more frequently in females.

Fundamentally there are three factors that could govern the 
differences between female and male immune systems. These 
are the sex hormones themselves, the presence in the host of 
two X chromosomes versus one X and one Y chromosome, and 
environmental and societal differences, for example in diet (9). 
The last of these is unlikely to affect mice, and since female and 
male mice manifest, on the whole, the same gender biases in 
autoimmunity as humans do, here we concentrate on the poten-
tial roles of sex hormones and X and Y chromosome content. 
Downstream, these two phenomena may govern directly or 
indirectly a number of factors, such as estrogen-induced and 
X-linked genes and gut microflora that contribute to or prevent 
disease (Figure 1).

Sex hormones affect the incidence  
of autoimmunity
Evidence for the influence of sex hormones on the development of 
autoimmune diseases includes observed changes in disease sever-
ity during pregnancy. The issue of pregnancy is confused by the fact 
that the condition has opposite effects in humans on some autoim-
mune diseases, for example the contrasting effects on RA and SLE 
(reviewed recently by Hughes and Choubey, ref. 10). The classic 
study that in 1938 reported the amelioration of RA during preg-
nancy (11) illustrated the protective effects of pregnancy. Later, dis-
eases such as MS were added to the group in which symptoms are 
reduced during pregnancy (12). On the other hand, many studies 
have indicated that pregnancy and estrogens (as opposed to pro-
gesterone) make the symptoms of SLE and related diseases more 
severe (reviewed by Jara et al., ref. 13). The different effects of preg-
nancy on different female-biased autoimmune diseases suggest 
that the role of sex in these diseases may not always be the same. 
Alternatively, the fact of being female may initiate disease via the 
same route in all cases, but pregnancy and sex hormones might dif-
fer in their abilities to exacerbate disease in some instances.

Estrogens clearly also affect autoimmunity in experimental 
animals. Increased estrogen and/or prolactin accelerate-lupus-like 
disease in NZB/NZW F1 mice (14, 15); these effects are dependent 
upon estrogen receptor α (ERα) (16). However, there is some dis-
agreement on this point (17), and clearer results have been obtained 
from studies examining the protective effects of androgens.

In human studies, treatment with testosterone had some 
benefit to men with MS; however, in females with SLE, testoster-
one administration did not result in significant improvement (18, 
19). Testosterone frequently appears to be protective in strains 
of mice that are autoimmune prone. For example, NZB/NZW 
F1 males develop disease later than females of the same strain, 
while disease onset in castrated males approaches that of females 
(14, 20). Similar results have been found for the development of 
T1D in NOD mice (21) and the onset of arthritis in SKG male mice 
injected with zymosan, a procedure that quickly induces disease in 
female but not normal male mice of this strain (22).

Autoimmune diseases occur when the immune system attacks and destroys the organs and tissues of its own host. 
Autoimmunity is the third most common type of disease in the United States. Because there is no cure for autoimmunity, 
it is extremely important to study the mechanisms that trigger these diseases. Most autoimmune diseases predominantly 
affect females, indicating a strong sex bias. Various factors, including sex hormones, the presence or absence of a second 
X chromosome, and sex-specific gut microbiota can influence gene expression in a sex-specific way. These changes in gene 
expression may, in turn, lead to susceptibility or protection from autoimmunity, creating a sex bias for autoimmune diseases. 
In this Review we discuss recent findings in the field of sex-dependent regulation of gene expression and autoimmunity.
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expression of IFN1 genes is controlled directly by sex hormones. 
On the other hand, sex hormones do affect expression of some of 
the PRRs (see below) and in this way might indirectly affect IFN1 
levels. Thus, the abundance of IFN1s in lupus patients might be 
caused by female sex hormone–induced increases in PRR levels, 
which in turn increase production of IFN1s.

One of the genes that controls expression of IFN1s is IFN regu-
latory factor 5 (IRF5). IRF5 has also been identified as a significant 
risk factor for lupus susceptibility (37, 38). Expression of IRF5 in 
mice has been reported to be sex dependent (39). As demonstrated 
by Shen and colleagues (39), C57BL/6, NZB, Nba2, NZB/NZW F1, 
and NZM mouse strains express significantly higher levels of Irf5 
mRNA in female than in male lymphocytes. Additionally, spleno-
cytes from lupus-prone mice were shown to express higher levels 
of Irf5 mRNA compared with cells from the C57BL/6 strain, which 
is not prone to lupus. This group further demonstrated that Irf5 
expression can be upregulated in vitro upon estrogen treatment, 
suggesting a potential mechanism for sex-biased expression of the 
gene and consequent overproduction of IFN1s (39).

Absence of IFN-γ signaling protects NZB/NZW F1 mice 
against lupus-like disease (40). Expression of the IFNG gene, on 
the other hand, is regulated directly by estrogens (41–45). This 
finding suggests a positive feedback loop between the IFNs and 
estrogens, since activation of IFN1 or IFN-γ signaling upregulates 
the expression of ERα (46). Estrogen, in turn, promotes IFN-γ pro-
duction by various lymphocytes. In addition, Panchanathan et al. 
demonstrated synergistic involvement of ERα and IFN signaling 
in activating the transcription of both IFN and estrogen-respon-
sive target genes (46).

Once produced, IFNs have many effects on the immune sys-
tem that contribute to the sex bias of autoimmunity. For example, 
IFN1s increase class 1 MHC expression on cells, and IFN-γ induces 
class II MHC and changes the nature of the proteasome, thereby 
affecting the nature and quantity of self-peptides presented to  
T cells. Other examples are described below.

Other immune-associated genes affected  
by sex hormones
Many genes with products that affect the immune system are con-
trolled by sex hormones. As far as innate immunity is concerned, 
estrogens induce the expression of intracellular but not surface 
TLRs in both male and female PBMCs (23). Because intracellular 
TLRs have been shown to affect the development of autoimmunity 
(47–51), it is possible that the hormonal effect of the expression of 
intracellular TLRs contributes to female-biased autoimmunity.

Unc-93 homolog B1 (UNC93B1) is an endoplasmic reticulum 
(ER) transmembrane protein that is essential for trafficking the 
TLRs that are expressed intracellularly (TLR3, TLR7, TLR8, TLR9, 
and probably other TLRs) from the ER to endosomes (52–54). 
UNC93B1 regulates the activity of these TLRs by mediating local-
ization to the site at which they will be functional. It is thought that 
this requirement somehow lowers the likelihood that TLRs will 
respond to host products such as self-nucleic acids that have been 
taken up as products of dying host cells (54). As far as immune 
cells are concerned, UNC93B1 is expressed at high levels in B cells, 
dendritic cells, macrophages, and monocytes (Immunological 
Genome Project; http://www.immgen.org).

Cells of the immune system express estrogen and androgen 
receptors, and in vitro experiments have tested whether engage-
ment of these receptors affects lymphocyte responses. Estrogen 
treatment enhances the response to antigen of PBMCs obtained 
from women (23). Conversely, testosterone inhibits the prolifer-
ation and differentiation of lymphocytes, antibody production by 
B cells, and the cytotoxic activity of NK cells (24–27). Presumably 
these and similar results are caused by changes in gene expression 
induced by the hormones, as discussed below.

Sex hormone effects on gene expression  
and autoimmunity
Given that the sex hormones bind transcription factors, it is almost 
certain that these hormones affect autoimmunity via their effects 
on gene transcription. Many genes have been implicated, some 
because their transcription is driven directly by hormone nuclear 
receptors and others because their transcription is controlled indi-
rectly by hormone induced changes in upstream proteins. We will 
focus first on the genes that are thought to be regulated directly by 
estrogen or androgen receptors.

IFNs and feedback loops involving sex hormones
The IFNs are of obvious relevance to this subject because they 
are well known to be overexpressed in patients with certain auto-
immune diseases (SLE in particular; see refs. 28–32) and their 
absence reduces lupus-like disease in susceptible mice (33, 34).

Transcription of IFN1 genes is induced by many pathways, 
almost all of which involve engagement of pattern recognition 
receptors (PRRs) such as the TLRs and cytoplasmic sensors of 
DNA and RNA (35, 36). There is not much evidence at present that 

Figure 1. Sex-specific factors that lead to sex bias in autoimmunity. Sex- 
related factors, including sex hormones, the presence of two X chromo-
somes, overexpression of X-linked genes due to incomplete inactivation of 
the second X chromosome, overexpression of miRNAs encoded on X chro-
mosomes, and sex-specific gut microbiota influence the gene expression 
profile and lead to sex-specific changes in gene expression. These changes 
in gene expression in turn drive sex-biased autoimmunity. In addition, 
these factors can influence each other. For example, sex hormones affect 
the gut microflora and expression of miRNAs and IFN-γ. In turn, gut micro-
flora can regulate the levels of sex hormones. 
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diovascular, renal, and/or neuropsychological disorders (70, 71). 
Interestingly, patients with Turner syndrome have a higher risk of 
developing autoimmune diseases than do females in general (72). 
However, patients with Turner syndrome exhibit a greater risk of 
autoimmune diseases characterized by male predominance (72), 
and Turner syndrome rarely overlaps with the profoundly female-
biased disease SLE (73–75).

Symptoms that appear in patients with Klinefelter syndrome 
also suggest a role for genes on the partially inactivated X chromo-
some in the immune system. Males with this disorder have two X 
and one Y chromosome. It has been reported that there is a 14-fold 
increase in the prevalence of SLE in these males compared with 
the general male population (76). As such, males with the XXY 
karyotype have a risk of developing SLE that is similar to that of 
the general female population. In addition, several reports suggest 
that expression of genes from the partially inactive X chromo-
some can play a role in autoimmunity (77, 78). Thus, Turner and 
Klinefelter syndromes indicate that aberrations in the content of X 
chromosomes in the host do affect autoimmune disease, although 
the one-to-one linkage between numbers of X and Y chromo-
somes and particular diseases is still unclear.

Studies establishing a role for X-linked genes lead to the 
question of whether there are any candidate genes located on 
the X chromosome that could potentially play a role in the devel-
opment of autoimmunity. The X chromosome encodes many 
immune-associated genes, including CD40L, CXCR3, OGT, 
FOXP3, TLR7, TLR8, IL2RG, BTK, and IL9R (79). Overexpression 
and/or hypomethylation of CD40L, CXCR3, and OGT have been 
reported in female but not male patients with SLE (77, 78).

The role of intracellular TLRs in the development of autoim-
munity has been extensively studied and is reviewed by others 
in this issue. In brief, it is well accepted that TLR7 and TLR9 are 
among the critical players during the development of lupus-like 
autoimmunity (47). Recent data obtained from different groups 
suggest that TLR7 is responsible for anti-ribonucleoprotein (anti-
RNP) and TLR9 for anti-DNA antibody production (47, 48, 80, 81). 
However, TLR7 and TLR9 play quite different roles in the patho-
genesis of murine lupus. TLR9 deficiency leads to the worsening 
of the disease (47, 48), whereas TLR7-deficient animals are par-
tially protected from lupus (47). More recent studies suggest that 
TLR9 signaling plays a protective role and somehow suppresses 
the production of TLR7-dependent anti-RNP antibodies (82, 83). 
Several studies have demonstrated that the dosage of Tlr7 and 
Tlr8 plays an important role in the development of both murine 
and human lupus. For instance, a recent study performed by 
Umiker and colleagues suggests a role for X-linked Tlr8 dosage in 
the development of SLE in 564Igi mice (84). Likewise Tlr7 dosage 
has been demonstrated to play a role in the development of SLE in 
mice and humans (85–87). Together these data suggest that Tlr7 
and Tlr8, due to their localization on X chromosome, might be 
overexpressed in females and thus lead to the elevated risk for the 
development of anti-RNP antibodies and lupus.

Our group has recently described another role for Tlr7 in auto-
immunity. In particular, we have identified a subset of B cells (age- 
associated B cells [ABCs], discussed in greater detail below), which 
appear in both aged female wild-type and young autoimmune mice 
(49). The appearance of these cells is dependent on intact TLR7 sig-

Several properties of UNC93B1 may be relevant to its possible 
role in the sex bias of autoimmunity. First, the amount of UNC93B1 
protein appears to be limiting, since TLR9 competes with TLR7 for 
UNC93B1-mediated trafficking to endolysosomes. TLR7 activa-
tion drives inflammation in mice in which the preferential binding 
of UNC93B1 to TLR9 is lost (55). Thus it is expected that increased 
expression of UNC93B1 would lead to immunological aberra-
tions. Secondly, expression of UNC93B1 is enhanced by estrogen, 
IFN1s, or IFN-γ (56). As mentioned above, moderate amounts 
of estrogens are known to increase levels of IFNs (57, 58) and 
IFNs are expressed at higher levels in females and autoimmune 
patients, suggesting the means whereby sex might control expres-
sion of UNC93B1. This finding is particularly intriguing because 
expression of UNC93B1 is markedly elevated in the PBMCs of SLE 
patients compared with healthy controls (59). Similarly, UNC93B1 
levels were appreciably higher in lupus-prone B6.Nba2 female 
mice when compared with age-matched wild-type controls (56). 
These observations suggest that UNC93B1 might contribute to 
female-biased autoimmune responses, perhaps via its ability to 
increase the concentrations of certain TLRs in endosomes.

Another recent study reports sex differences in the expression 
of sphingosine-1-phosphate receptor 2 (S1PR2) (60). S1PRs are 
GPCRs expressed in endothelium and other tissues that regulate 
cell survival, adherens junction assembly, migration, and barrier 
integrity (61–63). Several studies have indicated their role in vas-
cular biology (64–66). Using the EAE mouse model for human 
MS, Cruz-Orengo and colleagues recently suggested a role for 
S1PR2 in MS (60). SJL mice injected with a myelin oligodendro-
cyte G peptide develop EAE, and female mice are more suscepti-
ble to the disease than males. The investigators showed that S1PR2 
expression was increased in the areas of the CNS of the mice that 
demonstrated damage from EAE in female but not male mice. 
Moreover, female but not male EAE-induced SJL mice treated 
with the S1PR2 antagonist JTE-013 exhibited decreased disease 
severity. In addition, increased levels of S1PR2 were also detected 
in the CNS of female patients with MS when compared with male 
patients or healthy controls (60).

In summary, these reports indicate that the expression of a 
number of genes that play a role in the development of autoimmu-
nity is controlled by sex hormones. However, other gender-specific 
factors may also contribute to these diseases, as discussed below.

X-linked genes in the sexual dimorphism  
of autoimmunity
Apart from the sex hormones themselves, males and females also 
differ in the numbers of X or Y chromosomes each cell contains. 
Many years ago Mary Lyon suggested that, in order to maintain 
equivalent expression of X-encoded genes between males and 
females, one of the X chromosomes in each female cell should be 
inactive (67). However, although one of the two X chromosomes 
in females is almost completely inactive, approximately 15% of 
X-linked genes escape inactivation in humans, and a similar phe-
nomenon occurs in mice (68). Escape of these genes is clearly 
important for female health, as illustrated by Turner syndrome, a 
chromosomal disorder of females caused by complete or partial 
loss of an X chromosome (69). Females with the syndrome have 
several characteristic features and suffer from a number of car-
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sex bias (112). The significance of the microbiota for the develop-
ment of T1D in NOD mice was recently recognized (113). Markle 
and colleagues demonstrated that germ-free (GF) NOD males and 
females develop T1D with similar prevalence (114). Moreover, 16S 
bacterial rRNA sequencing showed that after puberty, male and 
female NOD mice develop different microbiota profiles. Finally, 
gavage of female NOD pups with male NOD–derived intestinal 
microbiota protects the females against development of T1D (114). 
Another group has reported that hormones mediate sex-based 
microbiota differences. Castration of male NOD mice reversed 
the microbiotic differences usually observed between male and 
female NOD animals (115). These data indicate that sex hormones 
influence the microbiota in a sex-specific way. In turn, the micro-
biota causes changes in gene expression that may lead to sex bias 
in the development of autoimmunity (Figure 1).

An effect of the microbiota has been also reported for the 
models of ankylosing spondylitis and RA (116, 117); however, no 
effect has been observed in the severity or the prevalence of lupus 
in GF MRLlpr mice (118), which indicates that not all autoimmune 
diseases are affected by microbiota.

Sex-dependent changes in the aging  
immune system
Most autoimmune diseases do not develop in childhood but 
instead affect adults between 40 to 60 years of age. Do male and 
female immune systems age similarly? Is it possible that some 
age-related differences occur in sex-dependent fashions, leading 
to the sex-biased predisposition to autoimmunity?

Two reports indicate that aging affects female and male 
immune systems differently. A study performed by Yan and col-
leagues indicated that in both males and females, aging leads to 
a significant decline in the percentage of naive CD4+ and CD8+ T 
cells and an increase in the percentage of memory T cells, FOXP3+ 

Tregs, and NK cells (119). However, their data also suggest that the 
decline in CD8+ T cell frequency and the corresponding increase 
in the percentage of memory T cells occurs significantly faster 
in male than in female subjects (119). Another recent study per-
formed on ethnically Japanese populations of males and females 
of different ages reported similar age-related changes in immune 
cell populations. The authors reported age-related declines in T 
and B cell numbers as well as changes in CD4+/CD8+ T cell ratios. 
The rate of decline in B and T cell numbers, increases in the CD4+/
CD8+ T cell ratio, and increases in NK numbers were significantly 
greater in males versus females (120).

Our group and others have also studied the differences in 
immune cell populations in aged male and female mice. These data 
indicate that aged female mice accumulate ABCs (49, 121–123),  
a subset of B cells defined by the expression of cell surface CD11c 
and the transcription factor T-bet (49, 123, 124). We have also 
reported that ABCs accumulate in several different mouse mod-
els of SLE (MRLlpr, NZB/NZW, MER–/–) and coincide with the 
appearance of autoantibodies (49, 50). Moreover, we were able 
to identify a similar B cell subset in the PBMCs of autoimmune 
patients. These data lead us to hypothesize that age-associated 
biological changes in females both contribute to the appearance 
of ABCs and occur during the onset of autoimmunity. Both pro-
cesses are sex dependent, which suggests that the same mech-

naling. Moreover, the ablation of ABCs prevents the appearance of 
autoantibodies in Mer–/– mice. It is possible that, due to its location 
on the X chromosome, Tlr7 is overexpressed in females, leading to 
the accumulation of ABCs in a gender-dependent manner, thereby 
contributing to female-biased autoimmunity. Further studies will 
be required to formally test this hypothesis.

Because X chromosome inactivation (XCI) occurs in early 
embryonic development, one of two X chromosomes in each cell 
is inactivated. This is a random and permanent process and, as a 
result, most females contain a 50:50 mix of cells expressing the X 
chromosome of maternal or paternal origin (88). However, some 
females experience non-random X chromosome silencing, result-
ing in 80% or more cells that are either paternal or maternal in ori-
gin, a phenomenon known as skewed XCI. Interestingly, skewed 
XCI is associated with autoimmune diseases. For example, 49% 
of female scleroderma patients exhibit skewed XCI compared 
with 2.4% of healthy controls (89). Significant XCI skewing has 
also been observed in patients with RA and those with autoim-
mune thyroiditis (90, 91). It is intriguing that severe XCI skewing 
is also associated with age, and it has been reported that PBMCs of 
16% of females over age of 50 were characterized by skewed XCI  
(92–94). However, these studies were performed using unsep-
arated PBMCs; therefore, it is still unclear whether different 
immune cells exhibit similar XCI skewing with age.

X chromosome–encoded microRNAs  
in sexual dimorphism
MicroRNAs (miRNAs) may also be governed by sex differences, 
thereby contributing to susceptibility to autoimmunity. It has been 
reported that miRNAs are differentially expressed between males 
and females in both gonadal and non-gonadal tissues (95–97). Sev-
eral studies indicate numerous dysregulated miRNAs in human 
and murine lupus, suggesting a role for miRNAs in the development 
of the disease (98, 99). In addition, lupus-associated miRNAs are 
reported to be differentially expressed in male and female lupus-
prone NZB/NZW F1 mice (100). Lupus-associated miRNAs regulate 
the expression of a number of genes that are important for immune 
responses, including FOXP3, RHOA, FCGR1, and others (101–104). 
It is not entirely clear what drives differential expression of miRNAs  
in males and females. The X chromosome is highly enriched in 
miRNAs (105): about 7% (113 miRNAs) of human miRNAs are 
encoded on the X chromosome, whereas only two miRNAs have 
been assigned to the Y chromosome thus far. Females with SLE are 
reported to overexpress 18 X-linked miRNAs, compared with males 
with SLE that do not overexpress any miRNAs (78). Although the 
functions of the majority of X-linked miRNAs remain unknown, 
some of these miRNAs are reported to play a role in the regulation of 
immune responses or are associated with autoimmunity (106–111).

Overall the data indicate that the presence of a second X chro-
mosome in females can markedly affect the expression levels of 
multiple genes and miRNAs, which might be crucial for the devel-
opment of female-biased autoimmunity.

Gut microbiota: sex differences and influence  
on autoimmunity
NOD mice display spontaneous, immune-mediated pancreatic β 
cell destruction, which leads to development of T1D with a strong 
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orders. The data on differential gene expression between genders 
suggest new potential targets for drug development.

It is likely that the factors reviewed here act simultaneously. 
Overexpressed X-linked genes and sex hormones probably act 
together in a synergistic manner, leading to a greater female-
biased predisposition to autoimmunity. At the same time male 
hormones in combination with a single X chromosome signifi-
cantly reduce the risk of autoimmunity. In summary, it is critical 
to consider all of these factors while developing novel therapeutics 
for sex-biased autoimmune diseases.

Concluding remarks
The data reviewed here indicate that immune responses in males 
and females are differentially regulated by several factors that 
lead to differences in gene expression profiles (Figure 1). It is 
important to appreciate both the cause and the outcome of these 
changes in order to improve our understanding of sex differences 
in autoimmunity and immune responses in general. More work 
is required on how sex-specific factors like sex hormones and X 
chromosome numbers affect particular populations of immune 
cells and ultimately lead to the development of autoimmunity, in 
order to generate novel therapeutic targets for autoimmune disor-
ders that have no cure at the present.
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anism is involved. We have identified TLR7, IFNGR, and B cell 
antigen receptor signaling as necessary and sufficient for the 
upregulation of T-bet expression in B cells (123, 124), which even-
tually causes B cells to assume the ABC phenotype. We have con-
firmed that TLR7 is most efficient in driving this process when 
compared with other TLRs (124). Moreover, the appearance of 
ABCs is completely dependent on intact TLR7 signaling, since 
TLR7 deficiency results in the absence of ABCs in both autoim-
mune and aged wild-type female mice (49, 50). This finding is 
particularly intriguing because the Tlr7 gene is encoded on the X 
chromosome, offering a potential explanation for the sex bias in 
the appearance of these cells (123).

It is often noted that some of the female-biased autoimmune 
diseases are diagnosed in middle-aged individuals, rather than 
earlier in life when factors such as sex hormones are at peak levels. 
Some explanations for this paradox have been mentioned above, but 
it is also worth pointing out that the initial event in autoimmune dis-
ease, a breakage in tolerance to self, may actually occur long before 
the clinical manifestations of the illnesses are manifest. Therefore 
the crucial problem may indeed occur at a time when estrogens and 
androgens are at their peak concentrations in the host.

Possible therapeutic interventions
As detailed above, numerous studies have been performed in an 
attempt to identify the factors that drive sex bias in autoimmunity. 
It is important to ask where these reports will lead the field in terms 
of possible therapeutic interventions. What are the possible out-
comes of these studies? The data on the hormonal effects have to 
be considered when hormonal replacement therapy or treatment 
with testosterone is used on autoimmune patients. Moreover, the 
potential immunosuppressive effects of testosterone might make 
the hormone a useful treatment for patients with autoimmune dis-
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